
DIBS: Just-in-time Congestion Mitigation for Data Centers

Kyriakos Zarifis ∗†, Rui Miao∗†, Matt Calder†, Ethan Katz-Basset†, Minlan Yu†, and Jitendra Padhye‡

†University of Southern California — ‡Microsoft Research
{kyriakos,rmiao,calderm,ethan.kb,minlanyu}@usc.edu — padhye@microsoft.com

Abstract
Data centers must support a range of workloads with dif-
fering demands. Although existing approaches handle rou-
tine traffic smoothly, intense hotspots–even if ephemeral–
cause excessive packet loss and severely degrade perfor-
mance. This loss occurs even though congestion is typi-
cally highly localized, with spare buffer capacity at nearby
switches. In this paper, we argue that switches should share
buffer capacity to effectively handle this spot congestion
without the monetary hit of deploying large buffers at in-
dividual switches. Specifically, we present detour-induced
buffer sharing (DIBS), a mechanism that achieves a near
lossless network without requiring additional buffers at in-
dividual switches. Using DIBS, a congested switch detours
packets randomly to neighboring switches to avoid dropping
the packets. We implement DIBS in hardware, on software
routers in a testbed, and in simulation, and we demonstrate
that it reduces the 99th percentile of delay-sensitive query
completion time by up to 85%, with very little impact on
other traffic.

1. Introduction
Modern data center networks (DCNs) must support a range
of concurrent applications with varying traffic patterns, from
long-running flows that demand throughput over time to
client-facing Web applications that must quickly compile re-
sults from a collection of servers. To reduce cost and queuing
delay, DCN switches typically offer very shallow buffers,1

leading to packet losses–and therefore slow transfers–under
bursty traffic conditions [29, 49].

∗ primary author
1 Arista 7050QX-32 has just 12MB of buffer to be shared by as many as 104
ports (96x10Gbps + 8x40Gbps). This is because the high-speed memory
that forms the buffer must support NxC read-write bandwidth, where N is
the number of ports and C is the nominal link speed. The cost of memory
increases as N and C increase.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys ’14, April 13–16, 2014, Amsterdam, Netherlands.
Copyright c© 2014 ACM 978-1-4503-2704-6/14/04. . . $15.00.
http://dx.doi.org/10.1145/2592798.2592806

Researchers have proposed a number of solutions to
tackle this problem [17, 19, 20, 24, 50–53], including
DCTCP [18]. DCTCP uses ECN marking to signal conges-
tion early to senders–before buffer overflows. This approach
effectively slows long-lasting flows. However, no transport-
layer congestion control scheme can reliably prevent packet
loss when switch buffers are shallow and traffic bursts are
severe and short-lived. One extreme example is a large num-
ber of senders each sending only a few packets in a burst to
a single receiver. Since congestion control–and senders in
general–cannot react in time, switches must attempt to ab-
sorb the burst. But since deep-buffered switches are expen-
sive to build, generally switches have to drop packets–even
though data center congestion is typically localized [37],
meaning that the network as a whole has capacity to spare.

This extreme scenario highlights a key assumption that
pervades much of the DCN work: when a switch needs to
buffer a packet, it must use only its own available buffer. If
its buffer is full, it must drop that packet. This assumption is
so taken for granted that no one states it explicitly.

In this paper, we challenge this assumption. We advocate
that, faced with extreme congestion, the switches should
pool their buffers into a large virtual buffer to absorb the
traffic burst, instead of dropping packets.

To share buffers among switches, we propose that a
switch detour excess packets to other switches–instead of
dropping them–thereby temporarily claiming space avail-
able in the other switches’ buffers. We call this approach
detour-induced buffer sharing (DIBS).

DIBS is easiest to explain if we assume output-buffered
switches, although it can work with any switch type. When
a packet arrives at a switch input port, the switch checks
to see if the buffer for the destination port is full. If so,
instead of dropping the packet, the switch selects one of its
other ports to forward the packet on.2 Other switches will
buffer and forward the packet, and it will make its way to its
destination, possibly coming back through the switch that
originally detoured it.

Figure 1 shows an example. It depicts the path of a single
packet (from one of our simulations) that was detoured mul-
tiple times, before reaching destination R. The weight of an
arc indicates how often the packet traversed that specific arc.
Dashed arcs indicate detours. While the actual order of the

2 We will describe later how we select the port. Specifically, we avoid ports
whose buffers are full, and also those that are connected to end hosts.

1

Sender's

pod

Receiver's

pod

Detour

Forward

S R

Edge

Aggr

Core

1

1

1
8

9

22
1

1

1

2
1

2
2

1

1

Figure 1: Example path of a packet detoured 15 times in a K=8
fat-tree topology. For simplicity, we only show 1 edge switch
and 1 aggregation switch in the sender’s pod, and abstract the 16
core switches into a single node. The numbers the arc thicknesses
indicate how often the packet traversed that arc.

hops cannot be inferred, we can see that the packet bounced
8 times back to a core switch because the aggregation switch
was congested. The packet bounced several times within the
receiver pod prior to reaching the receiver.

The idea of detouring–and not dropping–excess traffic
seems like an invitation to congestion collapse [29]. Our key
insight is to separate the slowing of senders to avoid con-
gestion collapse from the handling of excess traffic neces-
sary before congestion control kicks in. Our results show
that DIBS works well as long as a higher-layer congestion
control scheme such as DCTCP suppresses persistent con-
gestion and the network has some spare capacity for DIBS
to absorb transient congestion. We will formalize these re-
quirements later in the paper and show that they are easily
satisfied in a modern DCN.

In fact, DIBS is particularly suited for deployment in
DCNs. Many popular DCN topologies offer multiple paths
[16], which detouring can effectively leverage. The link
bandwidths in DCNs are high and the link delays are small.
Thus, the additional delay of a detour is low. DCNs are under
a single administrative control, so we do not need to provide
incentives to other switches to share their buffer.

DIBS has two other key benefits. First, DIBS does not
come into play until there is extreme congestion–it has no
impact whatsoever when things are “normal”. Second, the
random detouring strategy we propose in this paper has no
parameters to tune, which makes implementation very easy.

In the rest of the paper, we will describe the DIBS idea in
detail, and evaluate DIBS extensively using a NetFPGA [8]
implemenation, a Click [38] implementation and simula-
tions using NS-3 [9]. Our results show that DIBS signif-
icantly improves query completion time when faced with
heavy congestion. In cases of heavy congestion, DIBS can
reduce 99th percentile of query completion times by as much
as 85%. Furthermore, this improvement in performance of
query traffic is achieved with little or no collateral damage

to background traffic. for typical data center traffic patterns.
We also investigate how extreme the traffic must be before
DIBS “breaks”, and find that DIBS handle traffic load of up
to 10000 queries per second in our setting. Finally, we com-
pare the performance of DIBS to pFabric [20] (the state-of-
the-art datacenter transport designs intended to achieve near-
optimal flow completion times). We find that during heavy
congestion, DIBS performs as well (if not slightly better) in
query completion time while having less impact on the back-
ground traffic.

2. DIBS overview
DIBS is not a congestion control scheme; indeed, it must
be paired with congestion control (§3). Nor is DIBS a com-
pletely new routing scheme, relying on the underlying Eth-
ernet routing (§3). Instead, DIBS is a small change to that
normal Ethernet (L2) routing. In today’s data centers, when
a switch receives more traffic than it can forward on a port,
it queues packets at the buffer for that port.3 If the buffer is
full, the switch drops packets. With DIBS, the switch instead
forwards excess traffic via other ports.

When a detoured packet reaches the neighboring switch,
it may forward the packet towards its destination normally,
or, if it too is congested, it may detour the packet again to one
of its own neighbors. The detoured packets could return to
the original switch before being forwarded to its destination,
or it could reach the destination using a different path.

Single packet example. Figure 1 depicts the observed path
of a single packet that switches detoured 15 times on its way
to its destination R. This example came from an trace in our
simulation of a K=8 fat-tree topology with a mixture of long
flows and short bursts, modeled on actual production data
center workloads [18]. We discuss our simulations more in
§5.3. Here, we just illustrate how DIBS moves excess traffic
through the network.

When the packet first reached an aggregation switch in
R’s pod, the switch’s buffer on its port toward R was con-
gested, so the aggregation switch detoured the packet. In
fact, most of the detouring occurred at this switch. To avoid
dropping the packet, the switch detoured the packet to other
edge switches four times and back to core switches eight
times, each time receiving it back. After receiving the packet
back the twelfth time, the switch had buffer capacity to
enqueue the packet for delivery to R’s edge switch. How-
ever, the link from that switch to R was congested, and so
the edge switch detoured the packet back to the aggrega-
tion layer three times. After the packet returned from the
final detour, the edge switch finally had the buffer capac-
ity to deliver the packet to R. The path of this packet illus-
trates how DIBS effectively leverages neighboring switches
to buffer the packet, keeping it close unless congestion sub-
sides, rather than dropping it.

3 We assume an output queued architecture for the ease of description. DIBS
can be implemented in a variety of switch architectures (§4).

2

Edge

Aggr

Core

0 2 4 6 8 10

S
w
it
c
h
e
s

Time(ms)

Detours

t1 t2 t3

(a) Detours per switch over time.
(Each dot denotes the decision of
a switch to detour a packet.)

t1 : queues building up

right before the burst

t3 : Only the edge switch

still detouring

t2 : edge switch and all

aggregate switches detouring

Aggr

Edge

(b) Buffer occupancy at times t1, t2, t3 in a pod. Each switch is represented by 8 bars. Each bar is an
outgoing port connecting to a node in the layer below or above. The size of the bar represents the port’s
output queue length: (green: packets in buffer; yellow: buffer buildup; red: buffer overflow).

Figure 2: Detours and buffer occupancy of switches in a congested pod. During heavy congestion, multiple switches are detouring.

Network-wide example. In the next example, a large num-
ber of senders send to a single destination, causing conges-
tion at all the aggregate switches in a pod, as well as at
the destination’s edge switch. Figure 2(a) illustrates how the
switches respond to the congestion over time, with each hor-
izontal slice representing a single switch and each vertical
slide representing a moment in time. Each marker on the
graph represents a switch detouring a single packet. From
time t1 until just after t2, four aggregation switches have to
detour a number of packets, and the edge switch leading to
the destination has to detour over a longer time period. Even
with this period of congestion, DIBS absorbs and delivers
the bursts within 10ms, without packet losses or timeouts.

Figure 2(b) shows the buffer occupancy of the eight
switches in the destination’s pod over the first few millisec-
onds of the bursts. The bursts begin at time t1, with the
aggregation switches buffering some packets to deliver to
the destination’s edge switch and the edge switch buffer-
ing a larger number of packets to deliver to the destination.
Soon after, at time t2, all five of those buffers are full, and
the five switches have to detour packets. The figure depicts
the destination’s edge switch buffering packets randomly to
detour back to each of the aggregation switches, and the ag-
gregation switches scheduling packets to detour to the other
edge switches and back to the core. By time t3, most of the
congestion has abated, with only only the edge switch of the
receiver needing to continue to detour packets.

These examples illustrate how DIBS shares buffers among
switches to absorb large traffic bursts. They also highlight
the four key decisions that DIBS needs to make: (i) when to
start detouring; (ii) which packets to detour; (iii) where to
detour them to; and (iv) when to stop detouring. By answer-
ing these questions in different ways, we can come up with
a variety of detouring policies.

In this paper, we focus on the simplest policy. When a
switch receives a packet, if the buffer towards that packet’s
destination is full, the switch detours the packet via a random
port that is connected to another switch,4 and whose buffer is
not full. In §8, we briefly consider other detouring policies.

We conclude by noting two salient features of DIBS.

4 We do not detour packets to end hosts, because end hosts do not forward
packets not meant for them.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8F
ra

ct
io

n
of

 D
em

an
d

M
at

ric
es

 (

C
um

ul
at

iv
e)

Fraction of links that are hot

IndexSrv
3Cars
Neon

Cosmos

Figure 3: Sparsity of hotspots in four workloads

DIBS has no impact on normal operations. It comes into
play only in case of severe congestion. Otherwise, it has no
impact on normal switch functioning.

DIBS has no tunable parameters. The random detour-
ing strategy does not have any parameters that need tuning,
which makes it easy to implement and deploy. It also does
have not any coordination between switches, and thus de-
touring decisions can be made at line rate.

3. Requirements
DIBS can improve performance only if certain conditions
are met. We now describe these requirements, and show that
they are easily satisfied in modern DCNs.

No persistent congestion: DIBS is based on the premise
that even though a single switch may be experiencing con-
gestion and running out of buffer space, other switches in the
network have spare buffer capacity. We also assume that the
network has sufficient bandwidth to carry detoured packets
to the switches with buffer capacity. In other words, DIBS
requires that congestion in a data center environment is rare,
localized, and transient. Several studies of traffic patterns in
data centers satisfy this requirement [36, 37]. In fact, the Fly-
ways system also relies on this observation [37].

Figure 3 reproduces a graph from the Flyways paper [37].
It shows measurements from four real-world data center
workloads. The data sets represent different traffic patterns,
including map-reduce, partition-aggregate, and high perfor-
mance computing. The graph shows the distribution (over
time) of the fraction of links that are running “hot,” with uti-

3

lization at least half that of the most loaded link. At least
60% of the time in every dataset, fewer than 10% of links
are running hot.

We see similar results when we use scaled versions of
workload from [18] in our simulations (§5). Figure 4 shows
the fraction of links with utilization of 90% or more for three
different levels of traffic (using default settings in Table 2
except qps). We use 90% as a threshold, since it is more rep-
resentative of the extreme congestion that DIBs is designed
to tackle5. The takeaway remains the same – at any time,
only handful of the links in the network are “hot”. Figure 5
shows that for both baseline and heavy cases, there is plenty
of spare buffer in the neighborhood of a hot link. Although
the heavy workload induces 3X more hot links than the base-
line does, the fraction of available buffers in nearby switches
are just slightly reduced. In fact, we see that nearly 80% of
the buffers on switches near a congested switch are empty in
all cases except the extreme scenario where dibs fails (§5).

Congestion control: DIBS is meant for relieving short-term
congestion by sharing buffers between switches. It is not
a replacement for congestion control. To work effectively,
DIBS must be paired with a congestion control scheme.

The need for a separate congestion control scheme stems
from the fact that DIBS does nothing to slow down senders.
Unless the senders slow down, detoured packets will eventu-
ally build large queues everywhere in the network, leading to
congestion collapse. To prevent this, some other mechanism
must signal the onset of congestion to the senders.

Because DIBS is trying to avoid packet losses, the con-
gestion control mechanism used with it cannot rely on packet
losses to infer congestion. For example, we cannot use TCP
NewReno [14] as a congestion control mechanism along
with DIBS. Since NewReno slows down only when faced
with packet losses, the senders may not slow down until all
buffers in the network are filled, and DIBS is forced to drop
a packet. This not only defeats the original purpose of DIBS,
but also results in unnecessary and excessive queue buildup.

In this paper, we couple DIBS with DCTCP [18], which
uses ECN marking [5] instead of packet losses to signal
congestion.

No spanning-tree routing: Enterprise Ethernet networks
use spanning tree routing. Detouring packets on such a net-
work would interfere with the routing protocol itself. On
the other hand, data center networks typically offer multiple
paths and hence do not rely on spanning trees. Following re-
cent data center architecture designs [16, 32, 44], we assume
that switches forward packets based on forwarding tables
(also known as FIBs). A centralized controller may compute
the FIBs, or individual switches may compute them using
distributed routing protocols like OSPF or ISIS. When there
are multiple shortest paths available, a switch uses flow-level
equal-cost multi-path (ECMP) routing to pick the outgoing

5 With threshold set to 50%, the graph looks similar to Figure 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 ti
m

e
(C

um
ul

at
iv

e)

Fraction of links that are hot

Baseline workload
Heavy workload

Extreme workload

Figure 4: Hotlinks. Baseline workload is 300 qps, high is 2000
qps and extreme is 10,000 qps. See Table 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 ti
m

e
(C

um
ul

at
iv

e)

Fraction of buffers that
are available in neighboring switches

Baseline, 1-hop neighbors
Baseline, 2-hop neighbors

Heavy, 1-hop neighbors
Heavy, 2-hop neighbors

Extreme, 1-hop neighbors
Extreme, 2-hop neighbors

Figure 5: Neighboring buffer size

port for each flow [35]. We assume that switches do not in-
validate entries in their FIB if they happen to detect loops.

4. Design Considerations and Implications
We now discuss several issues that stem from the DIBS
design and requirements.

Interactions with TCP: By detouring some packets along
longer paths, DIBS can affect TCP in three ways. First,
DIBS can reorder packets within a flow. Such reordering
is rare, since DIBS detours packets only in cases of ex-
treme congestion. Reordering can be dealt with either by
disabling fast retransmissions entirely [20] or by increasing
the number of duplicate acknowledgments required to trig-
ger them [54]. For all the experiments presented in the paper
that used DIBS, we disabled fast retransmissions. We have
also experimented with simply increasing the dupack thresh-
old, and found that a dup-ack threshold of larger than 10
packets is usually sufficient to deal with reordering caused
by DIBS. Other than this, no changes are required on the
hosts.

Second, packets traveling along longer paths can inflate
TCP’s estimate of round-trip time (RTT) and RTT variance,
which TCP uses to calculate a retransmission timeout (RTO)
value to detect loss. However, packet losses are exceedingly
rare with DIBS, so the value of the timeout is not important.
Indeed, we do not even need to set MinRTO to a very low
value, as advocated by some prior proposals [29]. Instead,

4

we use a default MinRTO value of 1ms, which is commonly
used in data center variants of TCP [18].

Third, excessive detouring delays may trigger a spurious
retransmission by the sender. Since we do not need to set an
aggressive MinRTO, spurious retransmissions are rare.

Loops and multiple detours: Detour paths may take pack-
ets along loops on their way to the destination. For exam-
ple, in Figure 1, the packet loops between the receiver’s
edge switch and an aggregation switch twice, among other
loops. Loops can complicate network management and trou-
bleshooting, and so operators and routing protocols gener-
ally try to avoid them. We believe that the loops induced
by DIBS represent a net win, because DIBS reduces loss
and flow completion times, and the loops are transient and
only occur during periods of extreme congestion. In §5, we
show that DIBS only requires a limited number of detours
and only causes loops in a transient time period.

Collateral damage: DIBS may cause “collateral damage.”
For instance, if the example in Figure 2 had additional flows,
the detoured packets may have gotten in their way, increas-
ing their queuing delay and, possibly, causing switches to
detour packets from the other flows. However, we will show
in §5 that such collateral damage is uncommon and limited
for today’s data center traffic. This is because DIBS detours
packets only in rare cases of extreme congestion. Also, in the
absence of DIBS, some of these flows may have performed
worse, due to packet drops caused by buffer overflows at the
site of congestion. We will see examples of such traffic pat-
terns in §5.

Switch buffer management: So far, our description of
DIBS has assumed that the switch has dedicated buffers per
output port. Many switches in data centers have a single,
shallow packet buffer, shared by all ports. The operator can
either statically partition the buffer among output ports, or
configure the switch to dynamically partition it (with a min-
imum buffer on each port to avoid deadlocks). DIBS can be
easily implemented on both types of switches. With DIBS, if
the switch reaches the queuing threshold for one of the out-
put ports, it will detour the packets to a randomly selected
port. §5.5.2 evaluates DIBS with dynamic buffer allocations.

Switches can also have a combined Input/Output queue
(CIOQ) [53]. Since these switches have dedicated egress
queues, we can easily implement DIBS in this architecture.
When a packet arrives at an input port, the forwarding engine
determines its output port. If the desired output queue is
full, the forwarding engine can detour the packet to another
output port.

Comparison to ECMP and Ethernet flow control: De-
touring is closely related to Ethernet flow control [31] and
ECMP [35]. We provide a more detailed comparison in §6.

5. Evaluation
We have implemented DIBS in a NetFPGA switch, in a
Click modular router [38] and in the NS3 [10] simulator.
We use these implementations to evaluate DIBS in increas-
ingly sophisticated ways. Our NetFPGA implementation
validates that DIBS can be implemented at line rate in to-
day’s switches (§5.1). We use our Click implementation for
a small-scaled testbed evaluation (§5.2).

We conduct the bulk of our evaluation using NS-3 simula-
tions, driven by production data center traffic traces reported
in [18]. Unless otherwise mentioned, we couple DIBS with
DCTCP and use the random detouring strategy (§2). The
simulations demonstrate that, across a wide range of traf-
fic (§5.4) and network/switch configurations (§5.5), DIBS
speeds the completion of latency-sensitive traffic without un-
duly impacting background flows, while fairly sharing band-
width between flows (§5.6). Of course, DIBS only works if
the congestion control scheme it is coupled with is able to
maintain buffer capacity in the network; we demonstrate that
extremely high rates of small flows can overwhelm the com-
bination of DCTCP and DIBS (§5.7). Finally, we show that
DIBS can even outperform state-of-the-art datacenter trans-
port designs intended to achieve near-optimal flow comple-
tion times [20] (§5.8).

5.1 NetFPGA implementation and evaluation:
To demonstrate that we can build a DIBS switch in hardware,
we implemented one on a 1G NetFPGA [8] platform. We
found that it adds negligible processing overhead.

We followed the reference Ethernet switch design in
NetFPGA, which implements the main stages of packet
processing as pipelined modules. This design allows new
features to be added with relatively small effort. We imple-
mented DIBS in the Output Port Lookup module, where the
switch decides which output queue to forward a packet to.
We provide the destination-based Lookup module with a
bitmap of available output ports whose queues are not full.
It performs a bitwise AND of this bitmap and the bitmap of
the desired output ports in a forwarding entry. If the queue
for the desired output port is not full, it stores the packet in
that queue. Otherwise, it detours the packet to an available
port using the bitmap.

Our DIBS implementation requires about 50 lines of code
and adds little additional logic (2 Slices, 10 Flip-Flops and 3
input Look-Up Tables). Given the response from the lookup
table, DIBS decides to forward or detour within the same
system clock cycle. That means DIBS does not add process-
ing delay. Our followup tests verified that our DIBS switch
can forward and detour a stream of back-to-back 64-byte
packets at line-rate. Implementing DIBS requires very little
change in existing hardware.

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60
C

D
F

Query Completion Time (ms)

InfiniteBuf
Detour

Droptail100

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

Duration of individual flows(ms)

InfiniteBuf
Detour

Droptail100

(b)

Figure 6: Click implementation of DIBS achieves near optimal Query Completion Times because no flow experiences timeouts

DC settings Value TCP settings Value
Link rate 1 Gbps minRTO 10 ms
Switch buffer 100 pkt per port Init. cong. win. 10
MTU 1500 Bytes Fast retransmit disabled

Table 1: Default DIBS settings following common practice in
data centers (e.g., [18]) unless otherwise specified. In Table 2,
we indicate how we explore varying buffer sizes and other traffic
and network parameters.

5.2 Click implementation and evaluation
We implemented the detour element in the Click modular
router with just 50 additional lines of code. When a packet
arrives at a switch, Click first performs a forwarding table
lookup. Before enqueuing the packet to the appropriate out-
put buffer, our detour element checks if the queue is full.
If it is, the detour element picks a different output queue at
random.

We evaluated our Click-based prototype on Emulab [4].
Our testbed was a small FatTree topology with two aggrega-
tor switches, three edge switches, and two servers per rack.
We set parameters based on common data center environ-
ments as shown in Table 1. To avoid having out-of-order
detoured packets cause unnecessary retransmissions, when
using DIBS, we disabled fast retransmission.

We evaluated DIBS with the partition-aggregate traffic
(incast) pattern known to cause incast [29]. This traffic pat-
tern arises when a host queries multiple hosts in the network
in parallel, and they all respond at the same time.

Detouring is a natural solution for incast, because it auto-
matically and immediately increases the usable buffer capac-
ity when the incast traffic overwhelms a switch’s own buffer.
We will show that detouring can achieve near optimal per-
formance for incast traffic patterns.

In our test, the first five servers each sent ten simultaneous
flows of 32KB each to the last server.6 The primary metric of
interest is query completion time (QCT), which is the time
needed for the receiver to successfully receive all flows. We
ran the experiment 50 times with these settings. We also tried
several different settings for flow sizes, numbers of flows,
and queue sizes. All incast scenarios caused qualitatively
similar results.

6 To ensure that the servers generated flows simultaneously, we modified
iperf [7] to pre-establish TCP connections.

We consider three settings. In the first setting, the queue
on each switch port is allowed to grow infinitely. This setting
allows the switches to absorb incast burst of any size, with-
out packet loss so it represents a useful baseline. In the sec-
ond setting, we limit the queue size to 100 packets, and en-
force droptail queuing discipline. The third setting also uses
100 packets buffers, but enables DIBS.

The performance of the three settings is shown in Fig-
ure 6(a). With infinite buffer, all queries complete in 25ms.
DIBS also provides very similar results, with all queries
completing in 27ms. QCT is much higher with the smaller
buffer with droptail queuing, ranging from 26ms to 51ms.

The reason for this high QCT with droptail queuing and
why DIBS provides such an improvement to it becomes ap-
parent by observing the completion times of all the individ-
ual query flows. In Figure 6(b), in the droptail setting we
notice that a small number of responses (about 9%) have du-
rations between 25-50ms. The reason is that due to the bursty
nature of the traffic, those responses suffer from packet loss,
which forces them to take a timeout. In our experiment,
all queries had at least one such delayed response. Since a
query is not completed until all the responses have arrived,
those delayed responses determine the QCT. DIBS elimi-
nates packet drops and consequent retransmission timeouts,
guaranteeing that all responses have arrived within 25ms,
which is close to the optimal case. This explains the signifi-
cant improvement in QCT.

5.3 Simulations setup
Now we use NS3 simulations to study the performance of
DIBS on larger networks with realistic workloads. We will
primarily focus on comparing the performance of DCTCP
with and without DIBS, although we will also consider
pFabric [20] in §5.8.

DCTCP: DCTCP is the state of the art scheme for con-
gestion control in data center environment [18], and is cur-
rently being deployed in several large data centers support-
ing a large search engine. DCTCP is a combination of a
RED-like [12] AQM scheme with some changes to end-host
TCP stacks. The switch marks packets by setting ECN code-
points [5], once the queue exceeds a certain threshold. If the
queue overflows, packets are dropped. The receiver returns

6

Setting Min Max Section
BG inter-arrival (ms) 10 120 5.4.1
QPS 300 15000 5.4.2, 5.7
Response size (KB) 20 160 5.4.3, 5.7
Incast degree 40 100 5.4.4, 5.5.2
Buffer (packets) 20 100 5.5.1, 5.5.2
TTL 12 255 5.5.3
Oversubscription 1 16 5.5.4

Table 2: Simulation parameter ranges we explore. Bold values
indicate default settings. The top half of the table captures traffic
intensity, including background traffic (top row, with lower inter-
arrival time indicating more traffic) and query intensity (next three
rows). The bottom half of the table captures network and switch
configuration, including buffer sizes, initial packet TTLs, and link
oversubscription. We revisit some aspects in additional sections
on shared switch buffers (§5.5.2) and extreme congestion (§5.7).

these marks to the sender. The TCP sender reduces its rate
in proportion to the received marks.

DCTCP augmented with DIBS: Instead of dropping pack-
ets when the queue overflows, we detour them to nearby
switches as described in §2. The detoured packets are also
marked. In addition, we also disable fast retransmit on TCP
senders. For brevity, we refer to this scheme simply as DIBS
in this section.

To ensure fair comparison, we use settings similar to
those used to evaluate DCTCP [18].

Network and traffic settings: Table 1 shows network set-
tings. The switches use Equal-Cost Multi-Path (ECMP)
routing to split flows among shortest paths. In our default
configuration, we use a fixed 100 packet FIFO buffer per
output port, and set the marking threshold to 20 packets.
We simulate a network consisting of 128 servers, connected
using a fat-tree topology (K = 8) and 1Gbps links.

We use the traffic distribution data from a production data
center [18] to drive the simulations. We vary various param-
eters of these distributions, as well as switch and network
configurations, to evaluate a wide range of scenarios (i.e.
a “parameter sweep”). Table 2 depicts the default value of
each parameter in bold (corresponding to the normal case
in an earlier study [18]), the range we vary each parameter
over, and the sections in which we vary each parameter.

The traffic includes both query traffic (a.k.a. partition /
aggregate, a.k.a. incast) [18], and background traffic. The
background traffic has 80% of flows smaller than 100KB.
We vary the intensity of background traffic by varying the
interarrival time. In the query traffic, each query consists
of a single incast target that receives flows from a set of
responding nodes, all selected at random. We vary three
parameters of the query traffic to change its intensity: the
degree of incast (i.e., the number of responding nodes), the
size of each response, and the arrival rate of the queries. The
degree of incast and the response size determine how intense

a given burst will be, while the arrival rate determines how
many nodes will be the target of incast in a given time period.
We also vary the size of each output buffer at the switches.

In general, our intention is to start from the traffic pat-
terns explored in [18], and consider more intense traffic by
varying interarrival time of background traffic and intensity
of query traffic.

Metric: The metric of interest for query traffic is 99th
percentile of query completion time (QCT) [18]. This is
the standard metric for measuring performance of incast-like
traffic. For background traffic, the metric is flow completion
time (FCT) of short flows (1-10KB). Recall that the initial
window size for TCP connections in a data center setting
is 10 packets (Table 1). Since these flows can complete in
one window, the FCT of these flows stems almost entirely
from the queueing delay experienced by these packets, as
well as the delay of any loss recovery induced by congestion.
We focus on the 99th percentile of FCT for these flows,
to highlight any collateral damage. In contrast, DIBS has
little impact on the performamce of long flows, since their
throughput is primarily determined by network bandwidth.

5.4 Performance under different traffic conditions
5.4.1 Impact of background traffic
In our first experiment, we hold the query traffic constant
at the default values from Table 2 and vary the inter-arrival
time of the background traffic from 10ms to 120ms. The
amount of background traffic decreases as inter-arrival time
increases. Figure 7 shows the result. Although depicted on
one graph, QCT and background FCT are separate metrics
on different traffic and cannot be compared to each other.

DIBS significantly reduces the response time of query
traffic. The 99th percentile of QCT is reduced by as much as
20ms. Furthermore, the improvement in QCT comes at very
little cost to background traffic. The 99th percentile of back-
ground FCT increases by less than 2ms, while most of the
background flows are barely affected. In other words, there
is very little collateral damage in this scenario. Furthermore,
we see that the collateral damage does not depend on the
intensity of the background traffic.

There are two reasons for this lack of collateral damage.
First, in all the experiments, on average, DIBS detours less
than 20% of the packets. Over 90% of these detoured packets
belong to query traffic, since DIBS detours only in cases of
extreme congestion, and only query traffic causes such con-
gestion. DIBS detours only 1% of the packets from back-
ground flows. These background packets come from flows
that happen to traverse a switch where query traffic is caus-
ing a temporary buffer overflow. Without DIBS, the switch
would have dropped these packets. DIBS does not suffer
any packet drops in this scenario, whereas standard DCTCP
does. Second, most background flows are short, and the con-
gestion caused by an incast burst is ephemeral. Thus, most
background flows never encounter an incast burst, and so it

7

 0

 20

 40

 10 20 40 80 120

99
th

 c
om

pl
et

io
n

tim
e(

m
s)

Average interarrival time (ms)

QCT: DCTCP
QCT: DCTCP + DIBS

BG FCT: DCTCP
BG FCT: DCTCP + DIBS

Figure 7: Variable background traffic. Col-
lateral damage is consistently low. (incast de-
gree: 40; response size: 20KB; query arrival
rate: 300 qps). Although depicted on one
graph, QCT and background FCT are sepa-
rate metrics on different traffic and cannot be
compared to each other.

 0

 20

 40

 300 500 1000 1500 2000

99
th

 c
om

pl
et

io
n

tim
e

(m
s)

Query arrival rate (qps)

QCT: DCTCP
QCT: DCTCP + DIBS

DCTCP
DCTCP + DIBS

Figure 8: Variable query arrival rate. Collat-
eral damage is low. Query traffic rate has lit-
tle impact on collateral damage, and, at high
query rate, DIBS improves performance of
background traffic. (Background inter-arrival
time: 120ms; incast degree: 40; response
size: 20KB)

 0

 20

 40

 60

 80

 20 30 40 50

99
th

 c
om

pl
et

io
n

tim
e

(m
s)

Query response size (KB)

QCT: DCTCP
QCT: DCTCP + DIBS

FCT: DCTCP
FCT: DCTCP + DIBS

Figure 9: Variable response size. Collat-
eral damage is low, but depends on response
size. Improvement in QCT decreases with
increasing response size. (Background inter-
arrival time: 120ms; incast degree: 40; query
arrival rate: 300 qps)

is rare for a background packet to end up queued behind a
detoured packet.

5.4.2 Impact of query arrival rate
We now assess how DIBS affects background traffic as we
vary the rate of queries (incasts). Keeping all other parame-
ters at their default values (Table 2), we vary the query arrival
rate from 300 per second to 2000 per second. This scenario
corresponds to a search engine receiving queries at a high
rate. The results are shown in Figure 8.

We see that DIBS consistently improves performance of
query traffic, without significantly hurting the performance
of background traffic. The 99th percentile of QCT improves
by 20ms. The 99th percentile FCT shows a small increase
(1-2ms). However, at the highest query arrival rate (2000
qps), DIBS improves the 99th percentile FCT for short back-
ground flows. At such high query volume, DCTCP fails to
limit queue buildup. As a result, without DIBS, some back-
ground flows suffer packet loses, slowing their completions.
With DIBS, background traffic does not suffer packet losses,
as the packets will instead detour to other switches.

Collateral damage remains low because, even with 2000
qps, over 80% of packets are not detoured. More than 99%
of the detoured packets belong to query traffic in all cases.
DIBS does not suffer any packet drops in this scenario.

5.4.3 Impact of query response size
We now vary the intensity of query traffic by varying the
response size from 20KB to 50KB, while keeping all other
parameters at their default values (Table 2). Larger responses
correspond to collecting richer results to send to a client. The
results are shown in Figure 9.

We see that DIBS improves 99th percentile of QCT, but,
as the query size grows, DIBS is less effective. At a response
size of 20KB, the difference in 99th percentile QCT is 21ms,
but, at a response size of 50KB, it is only 6ms. This behavior
is expected. As the response size grows, the size of the burst
becomes larger. While there are no packet drops, as more

packets suffer detours, the possibility that a flow times out
before the detoured packets are delivered goes up. In other
words, with DIBS, TCP flows involved in query traffic suffer
from spurious timeouts.

Needless to say, with DCTCP alone, there are plenty of
packet drops, and both background and query traffic TCP
flows routinely suffer from (not spurious) timeouts. In con-
trast, DIBS has no packet drops.

As before, the impact on background traffic is small, but
it increases slightly with the increase in response size. The
difference in the 99th percentile of FCT of short flows is
1.2ms at 20KB, while it increases to 4.4ms at 50KB. This is
because more packets are detoured for a given incast burst.

5.4.4 Impact of incast degree
We now vary the intensity of incast by varying the incast de-
gree; i.e., the number of responders involved, from 40 to 100,
while keeping all other parameters at their default values
(Table 2). More responders correspond to collecting more
results to send to a client. Figure 10 presents the results.

We see that DIBS improves 99th percentile of QCT, and
the improvement grows with increasing incast degree. For
example, the difference between the two schemes is 22ms
when the degree of incast is 40, but grows to 33ms when
the incast degree is 100. The impact on background traffic is
small, but it increases with increasing incast degree.

It is interesting to compare Figures 9 and 10, especially
at the extreme end. For the extreme points in the two figures,
the total amount of data transmitted in response to a query is
the same (2MB). Yet, both DCTCP and DIBS perform worse
when the large responses are due to a high incast degree
(many senders) than when they are due to large response
sizes. The drop in DCTCP’s performance is far worse. With
large responses, the 99th percentile QCT of DCTCP was
44ms. With many senders, it is 79ms. For DIBS, the cor-
responding figures are 37ms and 46ms, respectively.

The reason is that the traffic with high incast degree is far
more bursty. When we explored large responses, 40 flows

8

 0

 20

 40

 60

 80

 40 60 80 100

99
th

 c
om

pl
et

io
n

tim
e(

m
s)

Incast degree

QCT: DCTCP
QCT: DCTCP + DIBS

FCT: DCTCP
FCT: DCTCP + DIBS

Figure 10: Variable incast degree. Collat-
eral damage is low, but depends on incast de-
gree. (Background inter-arrival time: 120ms;
query arrival rate: 300 qps; response size:
20KB)

 0

 5

 10

 15

 20

 1 5 10 25 40 100 200

99
th

 F
C

T
 (

m
s)

Buffer size (packets)

DCTCP
DCTCP + DIBS

(a) Background traffic

 1

 10

 100

 1000

 1 5 10 25 40 100 200

99
th

 Q
C

T
 (

m
s)

Buffer size (packets)

DCTCP
DCTCP + DIBS

(b) Query traffic

Figure 11: Variable buffer size. There is no collateral damage and DIBS performs best
with medium buffer size. (Background inter-arrival rate: 10ms; incast degree: 40; response
size: 20KB; query arrival rate: 300 qps)

transferred 50KB each. In the first RTT, each flow sends 10
packets (initial congestion window size). Thus, the size of
the initial burst is 400KB. In contrast, with extremely high
incast degree, 100 flows transfer 20KB each. Thus, the size
of the first burst is 1MB.

The bursty traffic affects DCTCP far more than it impacts
DIBS. With DCTCP alone, as the degree of incast grows,
more and more flows belonging to the incast suffer from
packet drops and timeouts.

DIBS is able to spread the traffic burst to nearby switches
and ensure no packet loss. However, DIBS is not completely
immune to burstiness. Packets suffer many more detours
in this setting than they do in the previous setting, for a
comparable total response size. For example, when the incast
degree is 100, 1% of the packets are detoured 40 times or
more. In contrast, in the previous setting, when the burst size
was 50KB, the worst 1% of the packets suffered only about
10 detours.

5.5 Performance of different network configurations
5.5.1 Impact of buffer size
All previous experiments were carried out with buffer size of
100 packets per port. We now consider the impact of switch
buffer size on DIBS performance. We vary the buffer size at
the switch from 1 packet to 200 packets, while keeping all
other parameters at their default values (Table 2). The results
are shown in Figure 11. We show the query and background
traffic results separately for better visualization.

We see that DIBS improves 99th percentile of QCT sig-
nificantly at lower buffer sizes. The performance boost is
more obvious at lower buffer sizes, where DCTCP suffers
from more packet drops while DIBS is able to absorb the
burst by spreading it between switches. This result also
shows that our choice of buffer size of 100 for all past ex-
periments is a conservative one in order to compare with
the default DCTCP setting [18]. For smaller buffer sizes the
performance boost of DIBS becomes more obvious.7

7 The fluctuation in the figure is caused by the queries in the 99th having
timeouts.

5.5.2 Impact of shared buffers
The switches deployed in production data centers usually
use Dynamic Buffer Allocation (DBA) to buffer the extra
packets in shared packet memory upon congestion. In our
simulation, we model a DBA-capable switch with 8X1GbE
ports and 1.7MB of shared memory based on the Arista
7050QX-32 switch [3] .

We use the default settings from Table 2 but vary the
incast degree and compare the result with Figure 10. By
enabling DBA, DCTCP has zero packet loss and DIBS is
not triggered. However, when we further increase the incast
degree beyond 150 by using multiple connections on single
server, we find that DCTCP with DBA experiences packet
loss and an increased QCT in 99th percentile. However,
when DIBS is enabled, we observe no packet loss even
upon extreme congestion which overflows the whole shared
buffer, which leads to a decrease of 75.4% for the 99th
percentile QCT.

5.5.3 Impact of TTL
So far, we have seen that the impact of DIBS on background
flows was small in all but the most extreme cases. Still, it
is worth considering whether we could reduce the impact
further. In some cases, packets are detoured as many as 20
times. One possible way to limit the impact of detoured
packets on background flows is to limit the number of de-
tours a packet can take. This limits the amount of “interfer-
ence” it can cause. The simplest way to limit detours is to
restrict the TTL on the packet.

We now carry out an experiment where we vary the max
TTL limit from 12 to 48, while keeping all other parameters
at their default values (Table 2). Recall that the diameter of
our test network is 6 hops. Each backwards detour reduces
the TTL by two before the packet is delivered to the des-
tination (e.g. one when packet is detoured, and one when
it re-traces that hop). Thus when the max TTL is 12, the
packet can be detoured backwards 3 times. When the max
TTL is 48, the packet can be detoured backwards 9 times.
“Forward” detours change the accounting somewhat.

9

 0

 20

 40

 12 24 36 48 Max

99
th

 c
om

pl
et

io
n

tim
e

(m
s)

TTL

QCT: DCTCP
QCT: DCTCP + DIBS

BG FCT: DCTCP
BG FCT: DCTCP + DIBS

Figure 12: Variable max TTL. Limiting TTL does not have signif-
icant impact on background traffic. (Background inter-arrival rate:
10ms; incast degree: 40; response size: 20KB; query arrival rate:
300 qps)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 6000 8000 10000 12000 14000

99
th

%
 c

om
pl

et
io

n
tim

e
(m

s)

Query per second

QCT: DCTCP
QCT: DCTCP + DIBS

BG FCT: DCTCP
BG FCT: DCTCP + DIBS

Figure 13: Extreme query intensity (Background inter-arrival time:
120ms; incast degree: 40)

Figure 12 shows the results. Note that the last point on
the X axis represents maximum TTL, which is 255. We
have also shown performance of DCTCP for reference. TTL
values have no impact on DCTCP’s performance. For DIBS,
the 99th percentile QCT improves with increasing TTL. The
reason is that at lower TTL, DIBS is forced to drop packets
due to TTL expiration. We also see that TTL has little impact
on 99th percentile FCT of background flows.

We note one other interesting observation. Note that
DIBS performs slightly better with TTL of 12, instead of
TTL of 24. We believe that with TTL of 24, packets stay in
the network for far too long, only to get dropped. In other
words, we waste resources. Thus, it may be best not to drop
a packet that’s been detoured many times! We are investigat-
ing this anomaly in more detail.

We have carried out this experiments in other settings
(e.g. higher incast degree etc.) and have found the results
to be qualitatively similar.

5.5.4 Impact of oversubscription
In order to study the effect of oversubscribed links on the
performance of DIBS, we repeated the previous experiments
with different oversubscription parameters for the fat-tree
topology. This was done by lowering the capacity of the
links between switches by a factor of 2, 3 and 4 (provid-
ing oversubscription of 1:4, 1:9 and 1:16 respectively). Our
experiments showed that DIBS consistently lowers the 99th
percentile QCTs by 20ms, for every oversubscription setting,
without affecting the background FCTs. This is because an
increasing number of packets are buffered in the upstream
path when oversubscription factor increases, but the last hop
of the downstream path is still the bottleneck for query traf-
fic. So at the last hop, DIBS can avoid packet loss and fully
utilize bottleneck bandwidth.

5.6 Fairness
We now show that DIBS ensures fairness for long-lived
background flows. Recall that our simulated network has

128 hosts, with bisection bandwidth of 1Gbps. We split the
128 hosts into 64 node-disjoint pairs. Between each pair we
start N long-lived flows in both directions. If the network is
stable, and DIBS does not induce unfairness, then we would
expect each flow to get roughly 1/N Gpbs bandwidth, and
the Jain’s fairness index [11] would be close to 1. We carry
out this experiment for N ranging from 1 to 16. Note that
when N is 16, there 128 * 2 * 16 = 4096 long-lived TCP
flows in the network. Our results show that Jain’s fairness
index is over 0.9 for all values of N.

5.7 When does DIBS break?
While DIBS performs well under a variety of traffic and
network conditions, it important to note that beyond a level
of congestion detouring packets (instead of dropping them)
can actually hurt performance. However, for this to happen,
the congestion has to be so extreme that the entire available
buffer (across all switches) in the network gets used. In
such a scenario, it is better to drop packets than to detour
them, since there is no spare buffer capacity anywhere in
the network. To understand where this breaking point is we
push the workload, especially the query traffic, to extreme.
The goal is to show that such a breaking point where DIBS
can cause congestion to spread critically exists indeed, but
for the tested scenario it is unrealistically high.

We start by pushing QPS to ever higher values. Figure 13
shows that, for the specific topology we tested against, DIBS
breaks when we generate more than 10K queries per second.
In this case, the queries arrive so fast that detoured packets
do not get a chance to leave the network before new pack-
ets arrive. Thus, large queues build up in the entire network,
which hurts performance of both query and background traf-
fic.

Note that the size of the query response is small, and it
takes the sender just two RTTs to send it to target receiver.
Thus, DCTCP’s congestion control mechanism (ECN mark-
ing) is not effective, since it requires several RTTs to work
effectively.

10

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 60 80 100 120 140 160

99
th

%
 c

om
pl

et
io

n
tim

e
(m

s)

Query Response Size(KB)

QCT: DCTCP
QCT: DCTCP + DIBS

BG FCT: DCTCP
BG FCT: DCTCP + DIBS

Figure 14: Large query response sizes
(Background inter-arrival time: 120ms; in-
cast degree: 40)

 0

 100

 200

 300

 300 500 1000 1500 2000

99
th

 c
om

pl
et

io
n

tim
e

(m
s)

Query arrival rate (qps)

BG FCT: pFabric
BG FCT: DCTCP + DIBS

(a) Background traffic

 0

 20

 300 500 1000 1500 2000

99
th

 c
om

pl
et

io
n

tim
e

(m
s)

Query arrival rate (qps)

QCT: pFabric
QCT: DCTCP + DIBS

(b) Query traffic

Figure 15: DIBS vs pFabric: Mixed traffic: Variable query arrival rate. (Background inter-
arrival time: 120ms; incast degree: 40; response size: 20KB)

The exact tipping point depends on the specifics of the
topology, the link speed, etc. Our goal is not to find it for all
environments, but rather to show that such a tipping point
exists, and that, for a reasonable setup, it is extremely high.

Next, we tried to increase query response sizes to see if
we could obtain a similar tipping point. Query rate was held
constant at 2000 queries per second. However, we found
that DIBS does not “break” in this scenario. The reason is
that the large query response size requires several RTTs to
transmit, which gives DCTCP enough time to throttle the
senders (Figure 14).

5.8 Comparison to pFabric
A number of recent proposals have shown that network per-
formance can be significantly improved by assigning prior-
ities to flows and taking these priorities into account when
making scheduling decisions [20, 51]. The latest proposal in
this area is pFabric [20], which provides near-optimal perfor-
mance for high-priority traffic by maintaining switch queues
by priority order, instead of FIFO.

We compare to pFabric as it is the state of the art, per-
forming better than similar approaches like PDQ [34]. pFab-
ric calls for very shallow buffers per port (24 packets) to min-
imize the overhead involved in maintaining a sorted packet
queue. If a high-priority packet arrives at a queue that is full,
a switch simply drops the lowest priority packet in the queue
to make room for the new arrival. It relies on the end host
to retransmit the dropped packet expeditiously. To this end,
pFabric requires end hosts to run a modified version of TCP
with a fixed timeout set to a very low value of 40 µs. How-
ever, the 40µs timeout that pFabric demands is difficult to
implement in servers: most modern kernels have 1ms clock
ticks. Additionally, packets need to be tagged with priori-
ties, and switches must be able to drop or forward random
packets in their queues selectively.

We now compare the performance between DIBS (i.e.,
DCTCP + DIBS) and pFabric. We use the same k=8 FatTree
topology as earlier and we generate the same mixed work-
loads in both cases, as described in §5.3. For pfabric, the
buffer size is set to 24 packets and the minRTO is adjusted
to 350us since 1Gpbs links are used.

Figure 15(a) shows that pFabric can hurt performance
of large background flows, since it gives higher priority
to shorter flows. Thus, when query traffic (short flows) is
high, long flows get starved. DIBS does not prioritize traffic,
and hence does not suffer from this problem8. In fact, Fig-
ure 15(b) shows that at high query arrival rate, DIBS even
slightly improves 99th percentile of the QCT for query traf-
fic. This is because at high query arrival rates, pfabric drops
too many packets, and ends up doing excessive retransmis-
sions. DIBS reduces packet losses via detouring, and thus
has slightly better performance.

5.9 Summary
In summary, these results show that DIBS performs well
over a wide range of traffic. It improves the performance
of query traffic while causing little or no collateral damage
to the background flows. The results also show that under
heavy load, DIBS is stable and long-lived flows treat each
other fairly – although DIBS can lead to poor performance
under extremely heavy query arrival rate.

6. Related Work
Data center networking is an active area of research. Here,
we only discuss recent ideas, closely related to DIBS.

Hot potato routing: DIBS’ main ancestor is hot potato (or
deflection) routing [23] which established the basic premise
to forward a packet to another node if it cannot be buffered
while in transit. DIBS is the first to explore how this idea is
uniquely suited for data center environments and workloads.
There are several theoretical frameworks [26, 42, 45] de-
signed to evaluate hot potato routing that can also be used as
the basis for a theoretical analysis of DIBS.

Ethernet flow control: Hop-by-hop Ethernet flow control
is designed for building lossless Ethernet networks9. When
buffer of a switch gets full, it pauses its upstream switch,

8 It is possible that not prioritizing short flows can hurt DIBS– e.g. if
queue is already filled with packets from background flows right before an
incast wave, then DIBS will detour packets from query flows (short), while
pFabric will give them priority. However, these scenarios are less common
and were not observed in our simulations.
9 Infiniband [6] uses similar ideas, although it is a different L2 technology.

11

and the pause message eventually cascades to the sender.
Priority flow control (PFC) [2, 31] expands on this basic idea
to provide flow control for individual classes of service. PFC
is leveraged by protocols like RoCE [13] and DeTail [53].

Like DIBS, Ethernet flow control may be viewed as a
mechanism to implicitly allow switches to share buffers:
when buffer usage at a switch exceeds a certain threshold,
the pause message causes packets to queue up at the up-
stream switch.

However, DIBS does not guarantee a lossless network;
it only minimizes losses in case of bursty traffic. Lossless
L2 layer may be needed for specialized settings like high-
performance compute clusters and storage area networks
may need a lossless L2 layer. However, typical data center
applications and the transport protocols (e.g. TCP) are de-
signed to tolerate occasional packet loss.

Ethernet flow control can be difficult to tune. To avoid
buffer overflow, a switch must send a pause message before
its buffer actually fills up, since message propagation and
processing takes time. Calculation of this threshold must ac-
count for cable lengths and switch architecture [1, 53]. To
avoid buffer underflow, the pause duration must also be cal-
culated carefully. In contrast, DIBS, with random detouring
strategy, has no parameters, and thus requires no tuning.

DIBS also offers more flexibility than Ethernet flow con-
trol. With Ethernet flow control, buffer sharing happens only
between a switch and its upstream neighbors. DIBS can redi-
rect packets to any neighbor, including downstream ones.

DIBS is also free of problems such as deadlock [22], as
we do not require any host or switch to stop transmitting.

Equal-cost multi-path (ECMP): ECMP spreads packets
between a source and a destination across multiple routes,
which is essential to data center topologies such as VL2 [32]
and FatTree [16]. ECMP may be seen as a form of implicit
buffer sharing among switches, since it splits traffic along
multiple paths. However, ECMP and DIBS differ in several
respects.

First, ECMP typically operates at flow level, while DIBS
operates at packet level, achieving finer-grained buffer shar-
ing at the expense of some packet reordering. While packet
level ECMP has been proposed [30], it is not widely used.
Second, DIBS spreads packets based on network load, not
path length. While load aware ECMP has been proposed, it
often requires complex centralized route management and
hence is not practical. Third, ECMP, as the name implies,
is limited to using equal cost paths. DIBS has no such re-
strictions. Most importantly, ECMP cannot provide succor in
some traffic scenarios, such as incast. When multiple flows
converge on a single receiver and the edge switch become
a bottleneck, even packet-level, load-aware routing [28] will
not help in this setting, while DIBS can.

Using ECMP does not rule out using DIBS. ECMP would
do coarse-granularity load-spreading, while DIBS helps out

on a shorter timescale. Indeed, in all the experiments shown
in §5, we used DIBS with flow-level ECMP.

Multipath TCP (MPTCP): MPTCP [46] is a transport pro-
tocol that works with ECMP to ensure better load spreading.
DIBS can co-exist with MPTCP.

Centralized traffic management systems: Centralized
traffic management systems [17, 24, 50, 51, 53] collect traf-
fic information in data centers and coordinate the hosts or
switches to optimize flow scheduling. Thus, the centralized
controller can only manage coarse-grained traffic at large
timescale. DIBS can complement such systems, by mitigat-
ing packet losses arising from short-term behavior of flows
that the centralized schemes cannot fully control.

Other transport protocols: In this paper, we coupled DIBS
with DCTCP. It is possible to combine DIBS with other
DCN transport protocols [52] as well, as long as require-
ments in (§3) are met.

Detouring in other settings The concept of detouring
has been explored in scenarios as diverse as on-chip net-
works [43], optical networks [27], overlay networks [21,
25, 33, 47] and fast failure recovery schemes [39–41]. Like
DIBS, flyways [37] rely on the fact that data center net-
works usually have sufficient capacity but experience local-
ized congestion. Flyways provide spot relief using one-hop
wireless detours.

7. Discussion

Network topology and detouring: In this paper, we fo-
cused on the FatTree topology. We now consider the effec-
tiveness of DIBS in other topologies with different levels of
path diversity. A switch gains more detouring options if it
has more neighbors (higher degree), which are better for
flow completion if they offer alternate paths to the desti-
nation. DIBS suffers if detouring options result in packets
traversing long paths with lengthy queues, leading to time-
outs or drops.10

Two recent topologies, HyperX [15] and JellyFish [48],
seem to have properties well-suited for detouring. HyperX
networks have many paths of different lengths between pairs
of hosts. One can imagine using the short paths under normal
conditions, but using detouring to exploit the larger path di-
versity when conditions warranted. Jellyfish connects fixed-
degree switches together randomly to provide higher band-
width than equivalently-sized FatTree topologies. To achieve
these bandwidth gains, Jellyfish uses a fixed number of paths
between pairs of hosts, some of which may be longer than
the shortest ones. DIBS can detour packets to all these paths
even they are of different length. Moreover, since Jellyfish

10 To merely function correctly, DIBS does not need multiple disjoint paths
between a sender and a receiver. In theory, DIBS would work even on a
linear topology, where DIBS can either detour packets back on the reverse
path, or, in the worst case, drop them.

12

has more switches that are closer to a destination than Fat-
Tree, DIBS to have more neighboring buffers to share.

Network admission control: Congestion mitigation is al-
ways coupled with network admission control. DCTCP con-
trols the sending rate of long flows, thus admitting more
short flows into the network. With DIBS, we admit even
more short flows by sharing more buffers across switches.
However, we still need admission control at the hosts to
prevent applications from sending too many intensive short
flows (e.g., due to misconfigurations, application bugs, or
malicious users).

Other detouring policies: In this paper, we focus on simple
random detouring without any parameter tuning. However,
DIBS can provide highly flexible detouring policies by mak-
ing different design decisions on (i) when to start detouring;
(ii) which packets to detour; (iii) where to detour them to;
and (iv) when to stop detouring. We discuss example detour-
ing policies that may be useful in different settings, leaving
detailed design and evaluation for future work.

Load-aware detouring: Random detouring works well in
a FatTree topology, because ECMP is effective in split-
ting traffic equally among shortest paths. However, topolo-
gies such as Jellyfish and HyperX have paths with differ-
ent lengths and have varying numbers of flows on these
paths. Load-aware detouring detours packets to neighboring
switches based on load. For example, when the destination
port’s buffer is full, a switch sends the packet via its output
port that has the lowest current buffer usage.

Flow-based detouring: Our basic mechanism makes detour-
ing decisions at the packet level, meaning that packets from
the same flow can traverse different paths. Instead, switches
could detour at the flow granularity, similar to how ECMP
is usually deployed. Some flows would be detoured more
often than others, and detoured packets from the same flow
would follow a consistent path. An operator could even en-
code policy in the configurations for flow-based decisions in
order to, for example, favor detouring of long flows, short
flows, or flows from certain users.

Probabilistic detouring: Detouring can be used to provide
different delays to different priorities of traffic. A switch can
detour packets with different probabilities based on current
buffer occupancy and packet priority. When the buffer is
lightly loaded, the switch may only detour some of the low-
est priority traffic to reserve room for higher-priority pack-
ets. As the buffer fills, the switch detours more classes of
traffic with higher probability. By detouring different traf-
fic with different probabilities, we essentially use a group of
FIFO queues at different switches to approximate a priority
queues at a single switch.

8. Conclusion
In this paper, we proposed detour-induced buffer sharing,
which uses available buffer capacity in the network to handle

sudden flashes of congestion. With DIBS, when a switch’s
buffer towards a destination is full, instead of dropping pack-
ets, it detours them to neighboring switches, achieving a near
lossless network. In effect, DIBS provides a temporary vir-
tual infinite buffer to deal with sudden congestion.

We implemented and evaluated DIBS using NetFPGA,
Click and NS-3, under a wide range of conditions. Our eval-
uation shows that DIBS can handle bursty traffic, without
interfering with their abilities to regulate routine traffic. This
simple scheme is just the starting point for what we believe
we can realize using more sophisticated detouring schemes.

References
[1] http://www.cisco.com/en/US/netsol/ns669/

networking_solutions_solution_segment_
home.html.

[2] 802.11p. http://en.wikipedia.org/wiki/IEEE_
802.11p.

[3] Arista 7050qx-32. http://www.aristanetworks.
com/media/system/pdf/Datasheets/
7050QX-32_Datasheet.pdf.

[4] The emulab project. http://emulab.net/.

[5] Explicit congestion notification. http://tools.ietf.
org/rfc/rfc3168.txt.

[6] Infiniband. http://en.wikipedia.org/wiki/
Infiniband.

[7] iperf. http://iperf.fr.

[8] The netfpga project. http://netfpga.org/.

[9] The ns-3 project. http://www.nsnam.org.

[10] ns-3 simulator. www.nsnam.org.

[11] A quantitative measure of fairness and discrimination for re-
source allocation in shared computer systems. In ICNP.

[12] Random early drop. http://tools.ietf.org/rfc/
rfc2481.txt.

[13] Rdma over converged ethernet. http://en.wikipedia.
org/wiki/RDMA_over_Converged_Ethernet.

[14] Tcp new reno. http://tools.ietf.org/html/
rfc6582.

[15] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber. HyperX: Topology, routing, and packaging of
efficient large-scale networks. In SC, 2009.

[16] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, com-
modity data center network architecture. In SIGCOMM, 2008.

[17] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In NSDI, pages 281–296, 2010.

[18] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center
tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010
conference, SIGCOMM ’10, pages 63–74, New York, NY,
USA, 2010. ACM.

[19] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vah-
dat, and M. Yasuda. Less is more: Trading a little bandwidth

13

for ultra-low latency in the data center. In Proceedings of the
USENIX Symposium on Networked Systems Design and Im-
plementation, NSDI ’12, San Jose, CA, USA, 2012. USENIX.

[20] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pfabric: minimal near-optimal
datacenter transport. In SIGCOMM, pages 435–446, 2013.

[21] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.
Resilient overlay networks. In SOSP, 2001.

[22] S. arne Reinemo and T. Skeie. Ethernet as a lossless deadlock
free system area network. In in Parallel and Distributed
Processing and Applications: Third International Symposium,
ISPA 2005, pages 2–5. Springer Berlin/Heidelberg.

[23] P. Baran. On distributed communications networks. Commu-
nications Systems, IEEE Transactions on, 12(1):1–9, 1964.

[24] T. Benson, A. Anand, A. Akella, and M. Zhang. Microte:
fine grained traffic engineering for data centers. In CoNEXT,
page 8, 2011.

[25] C. Bornstein, T. Canfield, and G. Miller. Akarouting: A better
way to go. In MIT OpenCourseWare 18.996, 2002.

[26] C. Busch, M. Herlihy, and R. Wattenhofer. Routing without
flow control. In SPAA, pages 11–20, 2001.

[27] A. Busic, M. B. Mamoun, and J.-M. Fourneau. Modeling
fiber delay loops in an all optical switch. In international
Conference on the Quantitative Evaluation of Systems, 2006.

[28] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng,
H. Wu, Y. Xiong, and D. Maltz. Per-packet load-balanced,
low-latency routing for clos-based data center networks.
CoNEXT ’13. ACM, 2013.

[29] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph.
Understanding tcp incast throughput collapse in datacenter
networks. In WREN, pages 73–82, 2009.

[30] A. Dixit, P. Prakash, and R. R. Kompella. On the efficacy of
fine-grained traffic splitting protocols in data center networks.
In SIGCOMM poster, 2011.

[31] O. Feuser and A. Wenzel. On the effects of the ieee 802.3x
flow control in full-duplex ethernet lans. In LCN, pages 160–,
1999.

[32] A. G. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. Vl2: a
scalable and flexible data center network. In SIGCOMM,
pages 51–62, 2009.

[33] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy,
and D. Wetherall. Improving the reliability of Internet paths
with one-hop source routing. In OSDI, 2004.

[34] C.-Y. Hong, M. Caesar, and B. Godfrey. Finishing flows
quickly with preemptive scheduling. In SIGCOMM, pages
127–138, 2012.

[35] C. Hopps. Analysis of an equal-cost multi-path algorithm,
2000.

[36] S. Kandula and R. Mahajan. Sampling biases in network path
measurements and what to do about it. In IMC, pages 156–
169, 2009.

[37] S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest
data center networks. In HotNets, 2009.

[38] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Transactions on
Computer Systems, Aug. 2000.

[39] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson,
S. Shenker, and I. Stoica. Achieving convergence-free routing
using failure-carrying packets. In SIGCOMM, 2007.

[40] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and
S. Shenker. Ensuring connectivity via data plane mechanisms.
In NSDI, 2013.

[41] S. S. Lor, R. Landa, and M. Rio. Packet re-cycling: Eliminat-
ing packet losses due to network failures. In HotNets, 2010.

[42] N. F. Maxemchuk. Comparison of deflection and store-
and-forward techniques in the manhattan street and shuffle-
exchange networks. In INFOCOM, pages 800–809, 1989.

[43] T. Moscibroda and O. Mutlu. A case for bufferless routing in
on-chip networks. In ISCA, 2009.

[44] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
Portland: a scalable fault-tolerant layer 2 data center network
fabric. In Proceedings of the ACM SIGCOMM 2009 confer-
ence on Data communication, SIGCOMM ’09, pages 39–50,
New York, NY, USA, 2009. ACM.

[45] G. Nychis, C. Fallin, T. Moscibroda, O. Mutlu, and S. Seshan.
On-chip networks from a networking perspective: congestion
and scalability in many-core interconnects. In SIGCOMM,
pages 407–418, 2012.

[46] C. Raiciu, S. Barré, C. Pluntke, A. Greenhalgh, D. Wischik,
and M. Handley. Improving datacenter performance and ro-
bustness with multipath tcp. In SIGCOMM, pages 266–277,
2011.

[47] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Ander-
son. The end-to-end effects of Internet path selection. In SIG-
COMM, 1999.

[48] A. Singla, C. yao Hong, L. Popa, and P. B. Godfrey. Jellyfish:
Networking data centers, randomly.

[49] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller. Safe
and effective fine-grained tcp retransmissions for datacenter
communication. In SIGCOMM, pages 303–314, 2009.

[50] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Snoeren.
Practical tdma for datacenter ethernet. In EuroSys, pages 225–
238, 2012.

[51] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better
never than late: meeting deadlines in datacenter networks. In
Proceedings of the ACM SIGCOMM 2011 conference, SIG-
COMM ’11, pages 50–61, New York, NY, USA, 2011. ACM.

[52] H. Wu, Z. Feng, C. Guo, and Y. Zhang. Ictcp: Incast con-
gestion control for tcp in data center networks. In CoNEXT,
page 13, 2010.

[53] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. H. Katz.
Detail: reducing the flow completion time tail in datacenter
networks. In SIGCOMM, pages 139–150, 2012.

[54] M. Zhang, B. Karp, S. Floyd, and L. L. Peterson. Rr-tcp: A
reordering-robust tcp with dsack. In ICNP, pages 95–106,
2003.

14

