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ABSTRACT
Networks today rely on middleboxes to provide critical per-
formance, security, and policy compliance functions. Today,
however, achieving these benefits and ensuring that the traf-
fic traverses the desired sequence of middleboxes requires
significant manual effort and operator expertise.

In this respect, Software-defined Networking (SDN) of-
fers a promising alternative. However, middleboxes intro-
duce new aspects (e.g., policy composition, resource man-
agement, packet modifications) that fall outside the purvey
of traditional L2/L3 functions that SDN supports (e.g., ac-
cess control or routing). Thus, prior attempts in applying the
SDN philosophy to middlebox management have mandated
significant changes to middlebox implementations and/or SDN
control interfaces.

This paper addresses a practical question: Can today’s
SDN simplify and improve the management of current mid-
dlebox deployments? To this end, we address algorithmic
and system design challenges to demonstrate the feasibility
of using SDN to simplify middlebox management. In doing
so, we also take a significant step toward addressing indus-
try concerns surrounding the ability of SDN to integrate with
existing infrastructure and support L4–L7 capabilities.

1. INTRODUCTION
Surveys show that middleboxes (e.g., firewalls, VPN gate-

ways, proxies, intrusion detection and prevention systems,
WAN optimizers) play a critical role in many network set-
tings [31, 48, 37, 46, 29]. However, managing middleboxes
to achieve the performance and security benefits they offer
is highly complex. This complexity stems from the need to
carefully plan the network topology, manually set up rules
to route traffic through the desired sequence of middleboxes,
and safeguards for correct operation in the presence of fail-
ures/overload [37].

Software-defined networking (SDN) offers a promising
alternative in this respect via logically centralized manage-
ment and decoupling the data and control planes [34]. We
are not alone in recognizing the promise of SDN for mid-
dlebox management. Recent work has embraced these SDN
principles and proposed new software-based programmable
middleboxes [47, 16]; new interfaces for manipulating mid-
dlebox state [24]; and offloading middlebox functions to re-
mote service providers [25, 29]. Unfortunately, these ef-
forts envision significant changes to how middleboxes are

implemented (e.g., [47, 16, 14] and where they are placed
(e.g., [29, 25]), and require middleboxes to expose new con-
trol APIs and internal states (e.g., [24]).

Given the size of the middlebox market (e.g., security ap-
pliances were a 6 billion dollar market [12]), the diversity
of functions (e.g., a large enterprise has 8 types of mid-
dleboxes [46] and the average enterprise deals with 5 ven-
dors [29]), the proprietary nature of middlebox implementa-
tions (e.g., specialized DPI hardware [8]), and natural con-
cerns with respect to control over security-related middle-
boxes [1], the above efforts likely face significant barriers to
adoption. Furthermore, there are large legacy deployments
(e.g., a large enterprise has ≈600 middleboxes [46]) that are
unlikely to go away. Thus, while these forward-looking re-
search efforts are valuable, it might take several years to re-
alize the benefits of SDN for middlebox deployments.

In this context, our work is driven by a practical question:
Can today’s SDN simplify and improve the management of
existing middlebox deployments?

Addressing this question is also relevant in light of indus-
try concerns surrounding SDN adoption: the need for prac-
tical use-cases, integrating with existing network infrastruc-
ture, and supporting L4–L7 functions [6, 1, 10]. In some
sense, middleboxes represent both a necessity and an oppor-
tunity for SDN—they are a critical piece of existing infras-
tructure; the de-facto approach for L4–L7 capabilities; and
they are difficult to manage.

Middleboxes introduce new dimensions for network man-
agement that fall outside the purvey of traditional L2/L3
functions. This creates new opportunities as well as chal-
lenges for SDN that we highlight in §2:
• Composition of middleboxes: Network policies typi-

cally require packets to go through a sequence of mid-
dleboxes (e.g., firewall+IDS+proxy). SDN can elimi-
nate the need to manually plan middlebox placements or
configure routes to enforce such policies. At the same
time, using flow-based forwarding rules that suffice for
L2/L3 applications atop SDN can lead to inefficient use
of the available switch TCAM (e.g., we might need sev-
eral thousands of rules) and also lead to incorrect or am-
biguous forwarding decisions (e.g., when multiple mid-
dleboxes need to process the same packet).
• Middlebox load balancing: Due to the complex packet

processing they run (e.g., deep packet inspection), a key
factor in middlebox deployments is to balance the pro-
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cessing load to avoid overload [29]. SDN provides the
flexibility to implement different load balancing algo-
rithms [40] and avoids the need for operators to manually
install traffic splitting rules or use custom load balanc-
ing solutions. Unfortunately, the limited TCAM space
in SDN switches make the problem of generating such
rules to balance middlebox load theoretically and practi-
cally intractable.
• Packet modifications: Middleboxes modify packet head-

ers (e.g, NATs) and even change session-level behaviors
(e.g., WAN optimizers and proxies may use persistent
connections). Today, operators have to account for these
effects via careful placement or manually reason about
the impact of these modifications on routing configura-
tions. By taking a network-wide view, SDN can elimi-
nate errors from this tedious process. Due to the propri-
etary nature of middleboxes, however, a SDN controller
may have limited visibility to set up forwarding rules that
account for such transformations.

Based on the trajectory of the aforementioned prior work
(e.g., [47, 24, 29, 25]) trying to meet the above challenges
within the confines of existing SDN interfaces and middle-
box implementations seems infeasible at first glance. Per-
haps surprisingly, we show that it is possible to address all
three challenges using our proposed NIMBLE system. NIM-
BLE allows network operators to specify a logical view of
the middlebox policy and automatically translates this into
forwarding rules that take into account the physical topol-
ogy, switch capacities, and middlebox resource constraints.
There are three key ideas underlying NIMBLE’s design:

• Efficient data plane support for composition (§4): We
use two key ideas: tunnels between switches and using
SDN capabilities to add tags to packet headers that anno-
tate each packet with its processing state.
• Practical unified resource management (§5): We ad-

dress the intractability of optimization by decomposing
the problem into a hard offline component that accounts
for the integer constraints introduced by switch capaci-
ties and an efficient online component that balances mid-
dlebox load in response to traffic changes.
• Learning middlebox dynamics (§6): We exploit the re-

porting capabilities of SDN switches to design lightweight
flow correlation mechanisms that account for most com-
mon middlebox-induced packet transformations.

We have built a proof-of-concept NIMBLE controller us-
ing POX [9] (§7). Using a combination of live experiments
on Emulab [3], large-scale emulations using Mininet [4], and
trace-driven simulations, we show that NIMBLE (§8):

• improves middlebox load balancing 6× compared to to-
day’s deployments and achieves near-optimal performance
w.r.t new middlebox architectures [47];
• takes only 100ms to bootstrap a network and to respond

to network dynamics in 11-node topology;
• takes less than 1.3 sec to rebalance the middlebox load
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Figure 1: Example to illustrate the requirements that middle-
box deployments place on SDN. The table shows the differ-
ent physical sequences of switches and middleboxes used to
implement the two logical policy chains: Firewall-IDS and
Firewall-IDS-Proxy.

and reduces this time 4 orders of magnitude compared to
strawman optimization schemes.

2. OPPORTUNITIES AND CHALLENGES
In this section, we use practical deployment scenarios to

identify key opportunities and challenges in using SDN for
middlebox-specific policies. To make this discussion con-
crete, we use the example network in Figure 1 with 6 switches
S1–S6, 2 firewalls FW1 and FW2, 1 IDS, and 1 Proxy.

2.1 Middlebox composition
Typical middlebox policies require a packet (or session)

traverses a sequence of middleboxes. In our example topol-
ogy, the network administrator wants to send all HTTP traf-
fic through the policy chain Firewall-IDS-Proxy and the re-
maining traffic through the chain Firewall-IDS. Many of these
middleboxes are also stateful and require visibility into both
directions of a session for correctness.

Opportunity: Today, middleboxes are placed at manually
induced chokepoints and the routing is carefully crafted to
ensure correct and stateful traversal. In contrast to this semi-
manual and error-prone process, SDN can programmatically
ensure correctness of middlebox traversal. Furthermore, SDN
allows administrators to focus on what policy they need to
realize without worrying about where this is enforced. Con-
sequently, SDN allows more flexibility to route around fail-
ures and middlebox overload and incorporate off-path mid-
dleboxes [25]. SDN can also ensure that the forward/reverse
flows of a session are directed to the same stateful middle-
box.

Challenge = Data plane mapping: Consider the physical
sequence of middleboxes FW1-Proxy1-IDS1 for HTTP traf-
fic in the example. Let us zoom in on the three switches
S2, S4, and S5 in Figure 2. Here, S5 sees the same packet
thrice and needs to decide between three actions: forward
it to IDS1 (post-firewall), forward it back to S2 for Proxy1
(post-IDS), or send it to the destination (post-proxy). How-
ever, it cannot make this decision based only on the flow
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Figure 2: Example of potential data plane ambiguity to im-
plement the policy chain Firewall-IDS-Proxy in our example
topology. We annotate different instances of the same packet
arriving at the different switches on the arrows.

header fields (the IP 5-tuple). The challenge here is that even
though we have a valid path to compose middlebox actions,
this may not be physically feasible because S5 will have an
ambiguous forwarding decision. This suggests that the use
of simple flow-based rules (i.e.,the IP 5-tuple) that suffices
for L2/L3 functions will no longer suffice.

2.2 Middlebox resource management
Middleboxes perform more complex processing to cap-

ture application-level semantics and/or use deep packet in-
spection. Studies show that middlebox overload is a com-
mon cause of failures [29, 37] and thus an important con-
sideration is to balance the load across middleboxes. For
example, in Figure 1 we may want to split the processing
load in half across the two firewalls.

Opportunity: Today, operators need to statically set up
traffic splitting rules or employ custom load balancing so-
lutions.1 In contrast, a SDN controller can use data plane
forwarding rules to flexibly implement load balancing poli-
cies and route traffic through specific physical sequences of
switches and middleboxes in response to network dynam-
ics [40].

Challenge = Data plane constraints: SDN switches are
limited by in the number of forwarding rules they can sup-
port; these rules are in TCAM and a switch can support
a few thousand rules (e.g., 1500 TCAM entries in 5406zl
switch [15]). In a large enterprise network with O(100) fire-
walls and O(100) IDSes [47], there are O(100 × 100) pos-
sible combinations of the Firewall-IDS sequence. Imagine a
load balancing algorithm that splits the traffic across all Fire-
wall/IDS combinations. Because, each such split needs to
have forwarding rules to route the traffic to the correct phys-
ical middleboxes, in the worst case a switch in the middle of
the network that lies on the paths between these firewalls and
IDSes may need O(100×100) forwarding rules. This an or-
der of magnitude larger than today’s switch capabilities [15].
In practice, the problem is even worse—we will have sev-
eral policy chains each with multiple middleboxes; e.g., each
ingress-egress pair may have a policy chain per application
port (e.g., HTTP, NFS). This implies that we cannot directly
use existing middlebox load balancing algorithms [47, 27]
1Our conversations with network operators reveals that they often
purchase a customized load balancer for each type of middlebox!

as these do not take into account switch constraints.

2.3 Dynamic traffic transformation
Many middleboxes actively transform the traffic headers

and contents. For example, NATs rewrite the IP addresses
of individual packets to map internal and public IPs. Other
middleboxes such as WAN optimizers may create new con-
nections on behalf of internal hosts and even tunnel traffic
over existing connections to remote servers.

In Figure 1, suppose there are two user groups accessing
websites through Proxy1 in a enterprise: The employee user
group from source subnet 10.1.1.0/24 should follow middle-
box policy Proxy-Firewall; while the guest user group from
source subnet 10.1.2.0/24 should follow middlebox policy
Proxy-IDS. The proxy delivers the traffic from different web-
sites to users in the two user groups. Unfortunately, the traf-
fic exiting the proxy may have different packet headers, ses-
sions, and payloads compared to the traffic entering it. Thus,
it is challenging to for the controller to install rules at S2 to
deliver the right traffic to Firewall or IDS next.
Opportunity: In order to account for such dynamic packet
transformations, operators today have to resort to ad hoc
measures: (1) placing middleboxes manually (e.g., placing
Firewall and IDS after the proxy to ensure all traffic traverses
all middleboxes); or (2) manually reason about the correct-
ness based on their understanding of middlebox behaviors.
While these stop-gap measures may work, they make the
network brittle as it may needlessly constrain legitimate traf-
fic (e.g., if the chokepoint fails) and also allow unwanted
traffic (e.g., wildcards). Using a network-wide view, SDN
can address these concerns by taking into account such dy-
namic packet transformations to install forwarding rules.
Challenge = Controller visibility: Ideally, the SDN con-
troller needs to be aware of the internal processing logic of
the middleboxes in order to account for traffic modifications
before installing forwarding rules. However, such logic may
be proprietary to the middlebox vendors. Furthermore, these
transformations may occur on fine-grained timescales and
depend on the specific packets flowing through the middle-
box. This entails the need to automatically adapt to such
middlebox-induced packet transformations.

In summary, we see that middleboxes introduce new op-
portunities for SDN reduce the complexity involved in care-
fully planning middlebox placements and semi-manually set-
ting up forwarding rules to implement the middlebox poli-
cies in a load-balanced fashion. At the same time, how-
ever, there are new challenges for SDN—data plane sup-
port for composition, managing both switch and middlebox
resources efficiently, and incorporating middlebox-induced
dynamic transformations.

3. NIMBLE SYSTEM OVERVIEW
Our goal in this paper is to address the challenges from the

previous section without modifying middleboxes and work-
ing within the constraints of the existing switches and to-
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Figure 3: Overview of the NIMBLE approach for using SDN
to manage middlebox deployments

day’s SDN standards (i.e., OpenFlow). Figure 3 gives an
overview of the NIMBLE architecture showing the inputs
needed for various components, the interactions between the
modules, and the interfaces to the data plane.

We begin by describing the high-level inputs to the NIM-
BLE modules.
1. Processing policy: Building on the SDN philosophy of

direct control, we want network administrators to only
tell NIMBLE what processing logic needs to be imple-
mented and not worry about where this processing oc-
curs or how the traffic needs to be routed. Building on
previous middlebox research [47, 31, 30], this policy is
best expressed via a dataflow abstraction as shown. Here,
the operator specifies different policy classes (e.g., exter-
nal web traffic or internal NFS traffic) and the middlebox
processing needed for each class.

Each class Ci (e.g., public Web) is annotated with its
ingress and egress locations and IP prefixes. For exam-
ple, external web traffic may be specified by a traffic
filter such: 〈 src = internal prefix, dst = external pre-
fixes, srcport = *, dstport = 80, proto = TCP 〉. We use
PolicyChaini to denote the required middlebox policy
chain for this class (e.g., Firewall-IDS).

2. Topology and traffic: NIMBLE must ultimately trans-
late the logical policy specification to the physical topol-
ogy. Thus, it needs a network map indicating where mid-
dleboxes are located, the links between switches, and the
link capacities. We also need an expected volume of traf-
fic Ti traversing each policy class. Such inputs are typ-
ically already available as part of the network informa-
tion base in SDN and other network management sys-
tems [13].

For simplifying our presentation, we assume that each
middlebox is connected to the network via an SDN-enabled
switch as shown in Figure 1; our techniques also apply to
deployments where middleboxes act as a “bump-in-the-
wire”. We use Sr to denote a specific switch and Mj to

denote a specific middlebox.
3. Resource constraints: There are two types of constrained

resources: (1) packet processing resources (e.g., CPU,
memory, accelerators) for different middleboxes and (2)
available TCAM memory for installing forwarding rules
at the SDN switches. We associate each switch Sr with
flow table capacity TCAM r (number of rules) and each
middlebox Mj with a packet processing capacity ProcCapj .

In addition, we need the per-packet processing cost
across middleboxes and classes. For generality, we as-
sume that these costs vary across middlebox instances
(e.g., they may have specialized accelerators) and pol-
icy classes (e.g., HTTP vs NFS). Let FP ij denote the
per-packet processing cost for a packet belonging to Ci

through a middlebox Mj .

Corresponding to three high-level challenges outlined in
the previous section, we propose three modules as part of
the NIMBLE controller as shown in Figure 3

1. The ResMgr module (§5) takes as input the network’s
traffic matrix, topology, policy requirements and outputs
a set middlebox processing assignments that implement
the policy requirements. This module takes into account
both middlebox and switch constraints in order to opti-
mally balance the load across middleboxes.

2. The DynHandler module (§6) automatically infers map-
pings between the incoming and outgoing connections
of middleboxes that can modify packet/session headers.
To this end, it receives packets (from previously unseen
connections) from switches that are directly attached to
the middleboxes. It uses a lightweight payload similarity
algorithm to correlate the incoming and outgoing con-
nections and provides these mappings to the RuleGen
module described next.

3. The RuleGen module (§7) takes the output of the ResMgr
(i.e., the processing responsibilities of different middle-
boxes) and the connection mappings from the DynHan-
dler and generates data plane configurations to route the
traffic to the appropriate sequence of middleboxes to their
eventual destination. In addition, the RuleGen also en-
sures that middleboxes with stateful session semantics
receive both the forward and reverse directions of the ses-
sion. As we discussed, these configurations must make
efficient use of the available TCAM space and avoid the
ambiguity that arises due to composition as we saw in
§2.1. Thus, we need an efficient data plane design (§4)
that supports these two key properties.

Conceptually, we envision the ResMgr and DynHandler
running as controller applications while the RuleGen can be
viewed as an extension to the network operating system [26].
We envision NIMBLE as a proactive controller for the com-
mon case of middleboxes that do not modify packet headers
to avoid the extra latency of per-flow setup. By construc-
tion, the DynHandler is a reactive component since it needs
to infer the connection mappings on the fly.
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4. NIMBLE DATA PLANE DESIGN
In this section, we focus on the design of the NIMBLE

data plane that can support the composition of middlebox
policy chains in large networks. There are two high-level
requirements here. First, as we saw in our example in Fig-
ure 2, a switch cannot simply rely on the IP 5-tuple to for-
ward packets correctly. Thus, we need some mechanism to
ensure that switches can make correct forwarding decisions.
Second, we need to ensure that the forwarding rules can fit
within the limited TCAM. As we will see, this is especially
critical for larger networks where middleboxes may be dis-
tributed through the network.

We make two simplifying assumptions in this section: (1)
Each middlebox is connected to a single switch rather than
installed as a “bump in the wire”. (The bump-in-the-wire
setting can be reduced to this setting with minor extensions
by installing forwarding rules at previous/next switches.) (2)
Middleboxes do not change the IP 5-tuple packet header
fields. They may, however, arbitrarily change packet pay-
loads and other fields (e.g., VLAN ids, MPLS, ToS fields
etc.) [28]. We relax the second assumption to allow arbitrary
changes to packet header fields in §6.

4.1 Unambiguous forwarding
Referring back to our example in Figure 2, S5 needs to

know if a packet has traversed the Firewall (send to IDS),
or traversed both Firewall and IDS (send to S2), or all three
middleboxes (send to dst) to know the next hop. That is, we
need SDN switches to identify the particular segment in the
middlebox processing chain that the packet is currently in; a
segment is a sequence of switches starting at a middlebox (or
an ingress gateway) and terminating at the next middlebox in
the logical chain.

There are two strawman options to track the processing
segment: keeping per-packet state in the controller or in the
switch. However, neither option is practical—state at the
controller increases per-packet latency and state at switch
requires modifications to commodity switches. Next, we de-
scribe our solution which uses topology information and dy-
namic packet tags to encode this processing state.

Based on input port when there are no loops: The sim-
pler case is when the sequence of switch traversals is loop
free. This means that a given directional link appears at most
once in the sequence.2 In this case, a switch can use the IP 5-
tuple fields and the incoming interface—the 5-tuple can dis-
tinguish the traffic and the incoming interface can uniquely
identify the middlebox that has completed processing the
packet. For example, for sequence of FWl-IDS1 in Figure 4a
(this is zooming on a specific section of the topology from
Figure 1), the packet needs to traverse -S2-FW1-S2-S4-S5-
IDS1-S5-, which has no loop. Thus, if packets arrive on the
in port, S2 forwards them to FW1 and if the packets arrive
2We define loop-free-ness based on edges rather than nodes be-
cause a switch has to appear twice if we need to route packets
through a middlebox attached to it.

on the FW1 port, S2 forwards them to S4.

Based on ProcState tags when there are loops: When
there are loops in the physical sequence, the combination
of input interface and packet header fields can no longer
uniquely identify which middlebox segment the packets is
in. This is precisely the scenario we described earlier.

To address this scenario, we introduce the notion of a
ProcState tag added to each packet header. This tag iden-
tifies the logical segment (i.e., packet processing state) so
that downstream switches choose the correct forwarding ac-
tion. In this case, the controller installs a tag addition rule to
the the first switch of each logical segment based on packet
header fields and input ports, and installs forwarding rules at
all the switches based on these tags. The ProcState tags can
be embedded inside the packet header using either VLAN
tags, MPLS labels, or unused fields in the IP header de-
pending on the support available in the SDN switches. Note
that this is completely transparent to the middlebox actions.
Since the tag addition rules only depend on packet header
fields and input interfaces, middleboxes may arbitrarily mod-
ify the fields we use for ProcState tags.

For our example from Figure 2, we will have the follow-
ing tag addition rules at S2 (see Figure 4b): {HTTP, from
FW1} → ProcState =FW; {HTTP, from Proxy1} → Proc-
State =Proxy. The corresponding forwarding rules at S5 are:
{HTTP, ProcState =FW} → forward to IDS1; and {HTTP,
ProcState =Proxy}→ forward to destination. The key idea
here is that S5 can use the ProcState tags to differentiate be-
tween the first instance of the packet arriving in the second
segment (to IDS) and the fourth segment (to destination).

4.2 Compact forwarding tables
In the simplest case, we specify hop-by-hop forwarding

rules at every switch along a physical sequence of middle-
box traversal. This is shown in Figure 4a where each switch
on the physical sequence has a completely descriptive rule
(for brevity, the rules only show the port) identifying traf-
fic from host H1 to host H2. While this works for small
topologies, it does not scale to large topologies with many
switches, multiple middlebox policy chains between differ-
ent pairs of ingress and egress prefixes, and many possible
physical instantiations of a given policy chain.

To reduce the number of forwarding entries in larger net-
works, we leverage the observation that switches in the mid-
dle of each segment of a physical sequence do not need fine-
grained rules. The only role they serve is to steer the packet
toward the switch that is connected to the next middlebox
in the sequence. (Recall that a segment is an ordered set of
switches between two middleboxes on a given physical se-
quence)

Building on this insight, we use the idea of inter-switch
tunnels that we refer to as SwitchTunnels between all pairs
of switches in the network. Here, each switch maintains two
forwarding tables: (1) a FwdTable specifying fine-grained
per-flow rules for middlebox traversals and (2) a TunnelTable
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Figure 4: Example of NIMBLE data plane configurations.
The other cases: hop-by-hop with loop and SwitchTunnels
with no loop are similar and are not shown for brevity.

indicating how to reach every other switch in the network,
similar to DiFane [49].3 The TunnelTable can be computed
using traditional OSPF or by the SDN controller.

With this in place, the ingress switch simply tunnels the
packets to the switch connected to the first middlebox in
the sequence. Similarly, any switch in the middle of a seg-
ment only needs to follow its TunnelTable to forward pack-
ets through the SwitchTunnel to the switch connected to the
next middlebox. The switch connected to a middlebox is re-
sponsible for forwarding packets to the middlebox and sub-
sequently marks packets with the appropriate SwitchTunnel
entry toward the next relevant switch (either connected to a
middlebox or the final destination). Note that switches ter-
minating a middlebox segment need fully descriptive rules
(similar to the hop-by-hop case) to forward traffic to/from
the middlebox.

To see how this works, we revisit the ambiguous forward-
ing example from §2 in Figure 4b. This scenario considers
a combination of using SwitchTunnels in conjunction with
ProcState because the sequence has a loop. We focus first
on the SwitchTunnels aspect. The key idea is that instead of
rules specifying the next hop switch, the switches connected
to middleboxes explicitly tunnel traffic to the next switch
connected to the subsequent middlebox. This is indicated by
the TunS5 entries in the Fwd actions at S2 for traffic incom-
ing from FW and Proxy and the TunS2 entry at S5 for traffic
incoming from IDS. Note that S4, the switch without mid-

3The key difference with Difane is that Difane maintains tunneling
table entries to each egress. Here, we need entries to each egress
switch and switches to which middleboxes are attached.

dleboxes, does not need any forwarding rules specific to this
sequence; it uses the SwitchTunnel information to look up
its TunnelTable (shown in italics) to route packets. S2 (S5)
additionally check whether they are destinations for a given
SwitchTunnel to see if they need to forward the packet to a
middlebox attached to it. The figure also shows the corre-
sponding ProcState to distinguish different instances of the
same packet arriving at the same switch. Again, the switches
connected to the middleboxes (S2, S5) are responsible for
adding the ProcState and for checking these in making for-
warding decisions to the next middlebox.

5. RESOURCE MANAGEMENT
The key challenge in the ResMgr is the need to account

for both the middlebox constraints and the available flow ta-
ble sizes of SDN switches. Unfortunately, this optimization
problem is NP-hard and is practically inefficient to solve for
realistic scenarios (§8.3). Due to space constraints, we do
not show the formal hardness reduction; at a high-level the
intractability is due to the integer constraints necessary to
model the switch constraints.

5.1 Offline-Online Decomposition
We address this challenge by decomposing the optimiza-

tion into an offline stage where we tackle the intractable part
of dealing with switch constraints and an online linear pro-
gram formulation that only deals with load balancing (see
Figure 5). The offline pruning stage runs only when the net-
work topology, switches, middlebox placements, or the net-
work policy changes. The online load balancing stage runs
more frequently when traffic changes.

The intuition here is that the physical topology and place-
ment of middleboxes are unlikely to change on short timescales.
Based on this, we run an offline pruning stage where given a
set of logical chains, we pre-select a subset of the available
physical sequences that will not violate the switch capacity
constraints. In other words, there is sufficient switch capac-
ity to install forwarding rules to route traffic through all of
these sequences. In this offline pruning step, we also en-
sure that we have sufficient degrees of freedom (e.g., each
PolicyChainc will have at least K distinct PhysSeqc,s as-
signed) and that no middlebox becomes a hotspot.

Given such a pruned set, we can formulate the load bal-
ancing problem using an efficient linear program. While we
do not theoretically prove the optimality of our decomposi-
tion, we can intuitively reason about the effectiveness of our
formulation—with high enough K we can achieve a close-
to-optimal solution since we have sufficient load balancing
flexibility. Furthermore, our results (§8.3) show that we find
near-optimal (≥ 99% of the optimal possible) solutions for
realistic network topologies and configurations.

5.2 Offline ILP-based sequence pruning
Modeling switch resource usage: For each chain PolicyChainc

we explicitly enumerate all possible physical middlebox se-
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Figure 5: High-level overview of the offline-online decompo-
sition in the ResMgr

quences that implement it. In our example topology in Fig-
ure 1, the set of all middlebox sequences for the logical chain
Firewall-IDS is {FW1-IDS1, FW2-IDS1}. Let PhysSeqc
denote the set of all physical sequences for PolicyChainc;
PhysSeqc,s denotes one instance from this set. We use Mj ∈
PhysSeqc,s to denote that the middlebox is part of this phys-
ical sequence.

The main idea here is that in order to route traffic through
this sequence, we need to install forwarding rules on switches
on that route. Let Routec,s denote the switch-level route for
PhysSeqc,s and let Rulesr ,c,s denote the number of rules
that will be required on switch Sr to route traffic through
Routec,s . Now, the value of the Rulesr ,c,s depends on the
forwarding scheme that we use. To see why, let us revisit the
two data plane solutions from Section 4.
1. Hop-by-hop: Here, Rules function is simply the number

of times the switch appears in a given physical sequence
as each switch needs a forwarding rule corresponding to
every incoming interface on this path.

2. Tunnel-based: In this case, switches in a tunnel segment
do not need rules specific to PhysSeqc,s ; they use the
connectivity table which is independent of traffic through
PhysSeqc,s . On the other hand, switches attached to a
middlebox need two non-tunnel rules to forward traf-
fic to and from that middlebox.4 Consider the physical
sequence S1-S2-FW1-S2-S4-S5-IDS1-S5-S6. Here, S2
and S5 need two rules to steer traffic in/out of the middle-
boxes but the remaining switches do not need new rules.

Integer linear program (ILP) Formulation: There are
two natural requirements for such a pruning step: (1) The
switch constraints will not be violated given this pruned set
of sequences. (2) Each logical chain has enough physical
sequences assigned to it, so that we retain sufficient freedom
to achieve near-optimal load balancing at the next stage.

We model this problem as an ILP shown in Figure 6. We
use binary indicator variables dc,s (Eq (6)) to denote if a
particular physical sequence has been chosen. To ensure we
have enough freedom to distribute the load for each chain,
we define a target coverage level K such that each PolicyChainc

will have at least K distinct PhysSeqc,s assigned to it in
Eq (2). We constrain the total switch capacity used in Eq (3)
to be less than the available TCAM space. Here, the number
4As a special case, the ingress and egress switches will also need a
non-tunnel rule to map the 5-tuple to a tunnel.

Minimize MaxMboxOccurs, subject to (1)

∀c :
∑
s

dc,s ≥ K (2)

∀r :
∑

c,s s.t.
Sr∈PhysSeqc,s

Rulesr ,c,s × dc,s ≤ TCAM r

(3)

∀j : MboxUsed j =
∑

c,s s.t.Mj∈PhysSeqc,s

dc,s (4)

∀j : MaxMboxOccurs ≥ MboxUsed j (5)
∀c, s : dc,s ∈ {0, 1} (6)

Figure 6: Integer Linear Program (ILP) formulation for
pruning the set of physical sequences to guarantee cover-
age for each logical chain while respecting switch TCAM
constraints

of rules depends on whether a given sequence is “active” or
not. (Note that this conservatively assuming that there will
be some traffic routed through this sequence and thus we will
need a forwarding rule.)

At the same time, we want to make sure that no mid-
dlebox becomes a hotspot; i.e., too many sequences use a
specific middlebox instance. Thus, we model the number
of chosen sequences in which a middlebox occurs and also
the maximum occurrences across all middleboxes in Eq (4)
and Eq (5) respectively. Our goal in the pruning ILP is to
minimize the value of MaxMboxOccurs to avoid middlebox
hotspots. Since we do not know the optimal value of K , we
use binary search to identify the largest feasible value for K .

By construction, formulating and solving this problem as
an exact ILP guarantees that if there is a feasible solution,
then it will find it.

5.3 Online load balancing with LP
Having selected a set of feasible sequences in the prun-

ing stage, we can formulate the middlebox load balancing
problem as a linear program shown in Figure 7

The main control variable here is fc,s , the fraction of traffic
for PolicyChainc that is assigned to each physical sequence
PhysSeqc,s . We need to ensure that these fractions add up
to 1 for each c (Eq (8)). That is, all traffic on all chains is as-
signed to some physical sequence. Next, we model the load
on each middlebox in terms of the total volume of traffic and
the per-class footprint across all the physical sequences it is
a part of (Eq (9)). Note that we only consider the physical
sequences that are part of the pruned set generated from the
previous section. Also note that the f variables are contin-
uous variables in [0, 1] unlike the d variables which were
binary variables. The ResMgr solves the LP to obtain the
optimal fc,s values and outputs these to RuleGen.

5.4 Extensions
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MinimizeMaxMboxLoad (7)

∀c :
∑

s:PhysSeqc,s∈Pruned

fc,s = 1 (8)

∀j : Load j =

∑
c,s s.t.Mj∈PhysSeqc,s

PhysSeqc,s∈Pruned

fc,s × Tc × FPc,j

ProcCapj

(9)

∀c, s : fc,s ∈ [0, 1] (10)

Figure 7: Online Linear Program (LP) formulation for bal-
ancing load across middleboxes given a pruned set

Handling node and link failures: While we expect the
topology to be largely stable, we may have transient node
and link failures. In such cases, the precomputed set of
sequences may no longer satisfy the coverage requirement
for each PolicyChainc. Fortunately, we can address this by
simply precomputing pruned sequences for different switch,
middlebox, and link failure scenarios. This is commonly
used in networks today; e.g., precomputing OSPF weights
for different failure scenarios.
Handling policy changes: We expect middlebox policy
changes also to occur at relatively coarse timescales. The
flexibility that NIMBLE enables, however, may introduce
dynamic policy invocation scenarios; e.g., route through a
packet scrubber if we observe high load on a web server.
Given that there are only a finite number of middlebox types
and a few practical combinations, we can precompute the
pruned sets for these dynamic policy scenarios as well.
Other traffic engineering goals: The load balancing LP
can be extended to incorporate other traffic engineering goals
and also model middleboxes that modify traffic as well. For
example, given the traffic assignments, we can model the
load on each link and constrain it such that no link is more
than 30% congested. Similarly, we can extend this load
models to account for the fact that some middleboxes drop
traffic. We do not show these extensions due to space con-
straints.

6. NIMBLE DYNAMICS HANDLER
One key issue in installing forwarding rules is that mid-

dleboxes may dynamically modify the incoming traffic. For
instance, a NAT may modify the source IP and a proxy may
multiplex sessions. When middleboxes modify the flows
(especially the packet headers), the downstream switches
should set up the forwarding rules based on the new packet
header fields. For example, when an NAT translates the ex-
ternal address to the internal one, it is important that the
controller knows such translation and thus install the right
forwarding rules to direct the traffic to the next middlebox
or egress switch. Thus, we need to ensure the forwarding
rules NIMBLE installs on switches take into account these
dynamic traffic transformations.

6.1 Design constraints and Intuition
Ideally, we would like fine-grained visibility into the pro-

cessing logic and internal state of each middlebox in order
to account for such transformations. One option is stan-
dardized APIs for middleboxes to export such information
to SDN controllers [24]. However, given the vast array of
middleboxes [46], large number of middlebox vendors (the
market for network security appliances alone is several bil-
lion dollars [12]), and the proprietary nature of these func-
tions, achieving standardized APIs and requiring vendors to
expose internal states is not a viable near-term solution.

Table 1 summarizes the different types of middleboxes
commonly used in enterprises today and annotates them with
key attributes: the type of traffic input they operate on, their
actions, and the timescales at which the dynamic traffic trans-
formations may change. For example, the firewall checks
both the packet header and payload information, and makes
decision on whether to drop the packet or forward it along
while NATs check the source and destination IP and port
fields in the packet headers and rewrite these fields. Note
that vendors may differ in their logic for the same class of
middlebox. For example, the NAT may randomly or sequen-
tially increase the port number when a new host connects
to it depending on the vendors. In summary, we see that
middleboxes operate at different timescales, modify differ-
ent packet headers, and operate at diverse granularities (e.g.,
packet vs. flow vs. session).

Given this diversity and the proprietary nature of the mid-
dlebox ecosystem, our driving principle here is:

Rather than model middleboxes or ask network operators
to specify the dynamic behaviors of middleboxes, we should
treat middleboxes as blackboxes and automatically learn their
relevant input-output behaviors.

The natural question then is why do we think this is feasi-
ble? There are two main insights here:

• First, we only need to worry about how the middlebox-
induced transformations affect the flow-based rules at other
switches in the network. Thus, we do not need visibility
into the internal proprietary logic; we only need to reason
about the behaviors of a middlebox pertinent to forward-
ing and policy enforcement. For instance, if the policy is
such that all traffic leaving the middlebox is trusted, then
we can set up wildcard rules for all downstream switches
without worrying about the per-packet or per-flow map-
pings the middlebox uses.
• The second insight stems from the success of techniques

from the security literature to detect stepping stones and
information leakage [50]. The idea here is that we can
use content payloads and inter-packet timings to detect
if two distinct traffic flows (i.e., with different IP-tuples)
seen at a given vantage point are likely to be related. In
our setting, the switch connected to the middlebox is the
vantage point and we want to correlate the incoming and
outgoing traffic to/from the middlebox. (Our problem is
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Middlebox Input Actions Timescale
of
changes

Info
neces-
sary

Approach

FlowMon Header No
change

– None –

IDS Header,
Payload

No
change

– None –

Firewall Header,
Payload

Drop? – None –

IPS Header,
Payload

Drop? – None –

Redundancy
eliminator

Payload Rewrite
payload

Per-
packet

None –

NAT Flow Rewrite
header

Per-flow Header
mapping

Payload
Match-
ing

Load
balancer

Flow Rewrite
head-
ers &
reroute

Per-flow Session
map-
pings

Payload
Match-
ing

Proxy Session Map
sessions

Per-
session

Session
map-
pings

Similarity
Detector

WAN-Opt Session map ses-
sions

Per-
session

Session
map-
pings

Similarity
Detector

Table 1: A taxonomy of the dynamic actions performed by
different middleboxes that are commonly used today [47]
and the corresponding information that we need to infer at
the SDN controller.

arguably simpler than the original motivation for these
techniques—the middlebox is a blackbox, not adversar-
ial.) Here, we use the ability of the SDN controller to
request specific packets from switches and run this cor-
relation.

We take a protocol-agnostic approach to see how much
accuracy achieve with a general framework. As we show, we
get close to 95% matching accuracy with only a few packets
overhead. Naturally, by adding protocol-specific state (e.g.,
HTTP state machines [38]) or incorporating middlebox-specific
information, we can this inaccuracy even further.

6.2 Similarity-based correlation
As summarized in Table 1, some middleboxes (e.g., Fire-

wall) do not change the packet headers so we can directly
map their incoming and outgoing flows (marked as None in
the information needed column). Other middleboxes (e.g.,
NAT) may change packet header fields, but do not change
the packet payloads. For these middleboxes, we can directly
match the payloads of the packets to infer the correlations of
incoming and outgoing flows (marked as payload matching).

The most challenging case is when the middleboxes may
change create new sessions or merge existing sessions (e.g.,
proxy, WAN optimizer). For these middleboxes, we cannot
directly match the payloads of individual packets because
one flow into a middlebox can be mapped to multiple flows
going out of the middlebox, and vice versa. For example,
the proxy may merge multiple users’ requests to the same

website into a single request, change the HTTP fields in a re-
quest header (e.g., using HTTP protocol 1.1 instead of 1.0),
prefetch contents, and serve requests from cached responses
for popular websites. To make this discussion concrete, we
focus on the proxy case since it is the most challenging type
of middlebox—it changes headers, modifies payloads, and
does not maintain a one-to-one correspondence between in-
coming/outgoing flows.

In this case, we observe that although middleboxes mod-
ify the headers and payloads, there are still similarities across
them (e.g., the web content is delivered through the proxy
to the user). Thus, we propose to leverage Rabin finger-
prints [39, 22] to calculate the similarities across flows. Fur-
thermore, because middleboxes only perform limited amount
of actions to each incoming flow, we only need to correlate it
to the outgoing flows that appear within a time window. Fi-
nally, we can leverage the ability of SDN to forward packets
without matching flow table rules to the controller for further
inspection.

SIMPLE Dynamic Handler 

Proxy	  

Corr.	  	  
flows	  

Install	  
rules	  

p1	  

Collect	  
pkts	  

Time window T 

p2	  p3	  p4	  

p1	  p2	  

cnn.com 
User 1 

User 2 
p1*	  p2*	  p3	  p4*	  

P1*	   P2*	  

q1	  q2	  q3	  

q1	   q2	  

f1: f1’: 

f2’: 

Figure 8: Similarity based correlation of incoming and out-
going flows through a middlebox

Given these insights, the NIMBLE DynHandler runs a
similarity-based correlation algorithm in three steps (Fig-
ure 8):

(1) Collect packets in a time window: When a new flow
arrives from the Internet to the middlebox, the switch sends
the first P packets of the new flow (e.g., p1 and p2 in Fig-
ure 8). In addition, for all the flows going out of the middle-
box within a time window W (e.g., flows f1′ and f2′), we
collect the first P packets for each flow (i.e., the packets p1∗

and p2∗ for flow f1′ and packets q1 and q2 for flow f2). The
controller reconstructs the payload stream from the P pack-
ets collected for each flow [38]. The window W reduces the
search scope of flows that may be correlated and P reduces
the bandwidth and processing overhead of the controller.

(2) Calculate payload similarity using Rabin fingerprints:
Now, the middlebox may modify or reorder part of the stream,
and thus we cannot directly compare payloads. Instead, we
compute a similarity score between every pair of streams.
To speed up the similarity calculation, we leverage Rabin
fingerprints [22]. We divide the payload stream into multi-
ple chunks and count the number of pairs of chunks from the
two payload streams that have the same hash value S . We
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define the similarity score as S/min(C1,C2), where (C1,
C2) are the number of chunks for the two streams.

(3) Identify the most similar flows: We identify the flow
going out of the middlebox that has the highest similarity
with the new incoming flow. If there are multiple outgoing
flows with the same highest similarity, we identify all these
flows as correlated with the incoming flow. For example in
Figure 8, we can find f1 has higher similarity with f1′ than
f2′.

Policy-specific optimizations: We can reduce the band-
width and processing overhead of the DynHandler based on
the middlebox policies the operators want to enforce. This is
because different policies may require different granularities
of correlation accuracy. Let us consider two specific poli-
cies in our proxy example: (1) Stateful access control: Only
allow incoming traffic from websites for which users have
initiated the visits and (2) User-specific policies: The opera-
tors may want traffic to/from a subset of hosts to go through
a IDS after the proxy. In case (2), we need to correlate the in-
coming flow with the actual user; while in case (1), we only
need to correlate the incoming flow with the flows to any of
the users. As a result, we need lower correlation accuracy
for case (1), and thus can reduce both the time window W
and the number of packets sent to the controller P .

7. IMPLEMENTATION
In this section, we describe our NIMBLE prototype fol-

lowing the structure in Figure 3. We implement the NIM-
BLE modules in POX(v. 0.0.0) [9].

RuleGen: For each class Ci , the RuleGen identifies the
ingress-egress prefixes and partitions the traffic into smaller
sub-prefix pairs in the ratio of the fcs values [40]. It initially
assumes that the traffic is split uniformly across sub-prefixes;
it uses the rule match counts from the switches to rebalance
the load if the traffic is skewed. To generate the rules, it
makes two decisions. First, it chooses a SwitchTunnel-based
or hop-by-hop scheme based on network size. Second, for
each sequence PhysSeqc,s , it checks for loops to add Proc-
State tags. We currently use VLAN or ToS fields. While
we described our design in the context of uni-directional
flows for clarity, RuleGen ensures correctness of traversal
for stateful middleboxes by setting up the forwarding rules
for the reverse path as well.

Rule verification: We also implement two custom verifi-
cation modules. First, we implement verification scripts that
take the rules generated by the RuleGen module to check
for two correctness properties: (1) Every packet that should
follow PolicyChaini does goes through some sequence that
implements this chain; and (2) A packet should not traverse
a middlebox, if its policy does not mandate it. For mid-
dleboxes that do not change packet header fields, our data
plane mapping guarantees the above two properties by con-
struction. When middleboxes change packet header fields,
the controller verifies the above two properties by combin-

ing the header space analysis [32] and the similarity-based
correlation in the DynHandler. First, we understand how in-
coming flows F1 to a middlebox M1 maps to outgoing flows
F ∗1 . Next, we leverage the header space analysis of rules at
switches to understand the reachability of flows F ∗1 between
two middleboxes along the physical chain (say, between M1

and M2). By iterating across all the middleboxes, we can un-
derstand the end-to-end reachability for different flows and
verify if it matches operator’s policies.

ResMgr: The ResMgr uses CPLEX for LP-based load bal-
ancing and CPLEX for the pruning step for different failure
scenarios. We currently support all single link, switch, and
middlebox failure scenarios. We also implement an opti-
mization to reuse the previously computed solution to boot-
strap the ILP/LP solver instead of starting from scratch.

DynHandler: We leverage existing SDN capabilities for
the DynHandler. The NIMBLE controller installs rules at
switches connecting to the middleboxes to retrieve the first
few packets for each new flow. We use a custom implemen-
tation of the Rabin-Karp algorithm configured with an ex-
pected chunk size of 16 bits. (We found that this offers the
best tradeoff between overhead and accuracy.) The DynHan-
dler runs the correlation algorithm as described in §6 and
provides the mappings to the RuleGen. For security-related
policies, the switches keep the flows until it receives the for-
warding rules from the RuleGen.

8. EVALUATION
We use a combination of real testbeds in Emulab, emu-

lation based evaluation using Mininet (v 2.0.0), and trace-
driven simulations. We do so to progressively increase the
scale of our experiments to larger topologies given the re-
source constraints (e.g., node availability, VM scalability)
that arises in each setup. Due to the lack of publicly avail-
able information on network topologies along with the spe-
cific middleboxes or policy, we use network topologies from
past work [44, 47] as starting points to create augmented
topologies with different middlebox placements. We assume
a gravity-model traffic matrix for the topologies except Fig-
ure 1. We use OpenvSwitch (v 1.7.1) [7] as the SDN switch
and use custom Click modules as middleboxes [2].

As a point of comparison, we use a hypothetical Optimal
system that uses the same logic as NIMBLE. The main dif-
ference is that instead of the optimization from §5, it uses an
exact ILP to solve a combined formulation with both switch
and middlebox constraints without the pruning step. (We
do not discuss this ILP due to space constraints but it looks
structurally similar to the formulations we described earlier.)

8.1 System Benchmarks
We begin with end-to-end benchmarks of the NIMBLE

controller throughput and the observed middlebox and link
loads vs. the optimal solution (i.e., running the ILP). Table 3
shows the number of middleboxes, hosts and switches in
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each topology. In each topology, every switch has a “host”
connected to it and every switch has at most one middlebox.
Every pair of hosts has a policy chain of three (distinct) mid-
dleboxes. We use iperf running on the hosts to emulate
different traffic matrices and use different port number/host
addresses to distinguish traffic across chains.

Platform,
Config

Time to
Install
Rules(s)

Overhead
(B)

Max MB
Load
(KB/s)

Max
Link Uti-
lization
(KB/s)

Emulab,
NIM-
BLE

0.041 5112 25.2 25.2

Mininet,
NIM-
BLE

0.039 5112 25.2 25.2

Table 2: End-to-end metrics for the topology in Figure 1 on
Emulab and Mininet. Having confirmed that the results are
similar, we use Mininet for larger-scale experiments in §8.1.

Topology #Switches,
#Hosts,
#Mboxes

#Rules Time (s) Overhead (KB)

Figure1 6, 2, 4 36 0.04 5
Internet2 11, 11, 10 1699 0.09 180
Geant 22, 20, 20 6964 0.19 820
Enterprise 23, 23, 20 6689 0.31 710

Table 3: Time and control traffic overhead to install forward-
ing rules in switches

We focus on three key metrics here: the time to install
rules, the total communication overhead at the controller,
and the maximum load on any middlebox or link in the net-
work relative to the optimal solution. We begin by running
the topology from Figure 1 on different physical machines
on the Emulab testbed. We run the same setup on Mininet
and check that the results are quantitatively consistent be-
tween the two setups in Table 2. We also check on a per-node
and per-link basis that the loads observed are consistent be-
tween the two setups (not shown). Having confirmed this,
we run larger topologies (Internet2, Geant, Enterprise) using
Mininet.

Time to install rules: Table 3 shows the time taken by
NIMBLE to proactively install the forwarding rules for the
four topologies in Mininet. The time to install is around
300 ms for the 23-node topology; the main bottleneck is that
controller sends the rule tables to each switch in sequence.
We can reduce this to 20ms overall with multiple paral-
lel connections. These are consistent with reported num-
bers in the literature on installing rules in Open flow enabled
switches [18, 42].

Controller’s communication overhead: The table also
shows the controller’s communication overhead in terms of
Kilobytes of control traffic to/from the controller to install
rules. Note that there is no other control traffic (except for
the DynHandler inference) during normal operation. Again,
these numbers are consistent with the total number of rules
that we need to install.
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8.2 Benefits of NIMBLE
Next, we highlight some of the benefits that NIMBLE en-

ables for middlebox deployments using the Mininet setup.
Flexiblity in middlebox placements: We compare NIM-
BLE with today’s Ingress-based middlebox deployments, where
for each ingress-egress pair, the middlboxes closest to the
ingress are selected. Here, we assume that there are two
types of middleboxes Firewall and IDS and that each switch
has exactly one middlebox of each type. As a point of ref-
erence, we also compare with a emulated CoMb setup with
“consolidated” middleboxes [47].5

First, we look at the Internet2 topology and look at the
per-middlebox loads in Figure 10. We see that NIMBLE
distributes the load more evenly and can reduce the maxi-
mum load by almost 5×. Figure 11 shows the maximum
load across middleboxes with different configurations. First,
NIMBLE is 3–6× better than today’s ad hoc Ingress setup.
Second, the performance gap between CoMb and NIMBLE
is negligible—NIMBLE can achieve the same load balanc-
ing benefits as CoMb with legacy middlebox deployments.
Reacting to middebox failure and traffic overload: We
consider two dynamic scenarios in the Internet2 topology:
(1) one of the middleboxes fails and (2) there is a traffic
overload on a few of the chains. In both cases, we need
to rebalance the load and we are interested in the time to re-
configure the network. Figure 9 shows a breakdown of the
time it takes to rerun the NIMBLE LP,6 generate new rules,
and install them. We see that the overall time to react is low
(150ms) and the overhead of the NIMBLE-specific logic is
negligible compared to the time to install rules.
5We emulate a unified Firewall+IDS middlebox with 2× capacity.
6We precompute pruned sets for single node failure scenarios
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Figure 11: Maximum middlebox load comparison across
topologies with NIMBLE, CoMb, today’s Ingress-based de-
ployments relative to the optimal ILP-based configuration.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Internet2 Geant Enterprise

Fr
ac

tio
n 

of
 S

eq
. w

 L
oo

ps

Topology

Optimal
SIMPLE

Figure 12: Fraction of sequences with loops.
Need for expressive data plane: One natural question is
whether the ProcState tags are actually being used. Figure 12
shows that a non-trivial fraction of sequences selected by
Optimal and NIMBLE that require a ProcState tag. While
one could argue that more careful placement could poten-
tially eliminate the need for ProcState tags, we believe that
we should not place the onus of such manual planning on
operators. Moreoever, under failure/overload scenarios, it
might be necessary to use sequences with loops for correct
policy traversal even with carefully planned placements.

8.3 Scalability and optimality
Next, we focus on the scalability and optimality of the

ResMgr using simulations on larger topologies. For brevity,
we only show results assuming that each policy chain is of
length 3. We vary two key parameters: (1) the available
TCAM size in the switches and (2) the number of policy
chains per ingress-egress pair.

Topology #Switches Time(s)
ILP ILP w/ NIMBLE NIMBLE w/

tunnel tunnel
Internet2 11 0.3 0.3 0.01 0.01
Geant 22 2.29 1.99 0.09 0.14
Enterprise 23 1.76 2.46 0.01 0.01
AS1221 44 23394 91.7 0.04 0.29
AS1239 52 722.7 218.1 0.06 0.2
AS3356 63 122246 3239 0.22 0.48
AS3356-aug 252 - - 0.92 1.22

Table 4: Time to generate load balanced configurations sub-
ject to switch constraints

Compute Time: Table 4 compares the time to generate the
configurations along two dimensions: the type of optimiza-
tion (i.e., ILP vs. NIMBLE) and the forwarding scheme (i.e.,
with or without SwitchTunnels). NIMBLE lowers rule gen-
eration time by four orders of magnitude for larger topolo-
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(b) With tunnels
Figure 13: Coverage vs. available switch capacity. We use 3
policy chains per ingress-egress pair.

gies. As a point to evaluate the scalability to very large
topologies, we consider an augmented AS3346 graph (la-
beled as AS3356-aug) where we add 4 more “access” switches
to every switch from the PoP-level topology. Even for this
case, NIMBLE only takes ≈1 second. (We do not show the
ILP because we gave up after a day.) This is well within typi-
cal the timescales of typical traffic engineering decisions [13].
Optimality gap: We evaluate the optimality gap for all
topologies and observe that across diverse configurations of
switch capacity and the number of policy chains, NIMBLE
is very close (99%) to the optimal in terms of the middlebox
load (not shown for brevity).
Benefit of SwitchTunnels: Figure 13 shows that with Switch-
Tunnel, the coverage for each logical chain increases sub-
stantially. A coverage of 0 implies that there was no feasi-
ble solution. For several configurations, we see that there is
no feasible solution with hop-by-hop forwarding but we find
feasible solutions with SwitchTunnels (e.g., AS1221). This
confirms the value of using SwitchTunnels to better utilize
the available switch capacity and to provide more degrees of
freedom for load balancing.
Scalability of pruning: Using CPLEX takes around 800
seconds to compute the pruned set for the AS3356 topology
and around 1800 seconds for AS3356-aug. Since this is an
offline step that depends only on the network topology, we
believe this overhead is still acceptable. As we discussed, we
can reduce this by bootstrapping the solver to use solutions
from previous iterations for the failure precomputation. Us-
ing this optimization reduces the pruning time substantially
to 110s from 1800s for AS3356-aug.

8.4 Accuracy of the DynHandler
As discussed in §6, proxies create the most challenges in

terms of dynamic behaviors—they create/multiplex sessions
and change packet contents. Thus, we focus on the accu-
racy of the DynHandler in inferring correlations between re-
sponses from the web servers to a Squid proxy and from the
Squid instance to the individual users. To make the evalu-
ation concrete, we consider the two types of policies: user-
specific (i.e., identify the specific user responsible for an in-
coming connection); and stateful policies (i.e., check if there
is some user who initiated the traffic).

We include introduce two metrics of accuracy: (1) False
mapping rate: The fraction of Internet→Squid sessions that
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we should apply a policy but do not (e.g., in the user-specific
policy, we match the session to the wrong user; or in the
stateful policy case we cannot find a user to match even
though the session is initiated by a user); (2) Missing map-
ping rate: The fraction of Internet→Squid sessions that we
should not apply a policy but we do (e.g., in the user-specific
policy, we fail to match a session to the user).7

We consider 20 simultaneous user web browsing sessions
to access popular top 100 US websites [11]. To accurately
emulate web page effects (e.g., Javascript, multiple connec-
tions etc), we use Chrome configured with the Squid as an
explicit proxy. We collect 394 sessions from Internet→Squid
and 1328 sessions Squid→Users.

However, obtaining the ground truth of mappings between
users and sessions from the Internet is itself a challenging
problem given the complexity of Squid actions. This be-
comes especially hard as many websites use third-party con-
tent (e.g., analytics javascripts or Facebook widgets) that
may be common. As a first order approximation, we instru-
ment each browser instances with unique fake UserAgent
strings to allow us to correlate the sessions after the fact.
Unfortunately, even this turns out to be insufficient because
As such we view false mapping and missing mapping rates
as conservative upperbounds on the true inaccuracy of our
DynHandler since our ground truth is itself incomplete.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
rr

or
 R

at
e

Time Window (sec)

False Mapping Rate, User
Missing Mapping Rate, User

Missing Mapping Rate, Stateful

Figure 14: Accuracy of the NIMBLE DynHandler for two
types of proxy-specific policies.

Figure 14 shows the error metrics for user-specific and
stateful policies as a function of the correlation window and
using the first 5 packets. (The false mapping rate for stateful
is zero and thus we do not show it.) We see that for the user-
specific policy, at 500ms the false mapping rate is 11.4% and
the missing mapping rate is 7.6%. If we only need to realize
the stateful policy, then we can use a smaller time window
(e.g., W=200ms) to achieve similar error rate. In both cases,
the bandwidth overhead from the switch to the controller is
small; with a window of 500 ms the overhead is 65KB on
average (not shown).

9. DISCUSSION
7Note that the actual formula for calcuating the two rates are more
complex due to the fact that a given Internet→Squid session may
map to multiple users since the proxy can multiplex sessions.

Extended forwarding abstractions: NIMBLE shows that
today’s switch capabilities (e.g., packet header fields, VLANs,
tunneling) are sufficient for middlebox policy traversals. If
the switch can natively support stateful forwarding, then the
controller design can be simpler and also use fewer rules.
SDN switches as middleboxes: SDN switches provide some
limited middlebox-like capabilities for load balancing or ac-
cess control. This enables new opportunities for realizing
such functions either in switches or legacy middleboxes. Anal-
ogously, if the switches do not have sufficient memory for
ACL rules, then we can offload this to hardware middle-
boxes. While we do not discuss these due to space con-
straints, it is easy to extend NIMBLE to exploit these oppor-
tunities (e.g., view each SDN switch as having two roles).
Correct operation under recomputation: One concern is
correctness when NIMBLE recomputes middlebox process-
ing responsibilities. In this case, the forwarding rules for
a given flow may get mapped to a new sequence under the
new rules, but the middleboxes on the new sequence may not
have the necessary state. To address this, we plan to lever-
age the flow-level consistency abstraction from recent work
on consistent updates [41].

10. RELATED WORK

Middlebox-specific routing: The works closest to NIM-
BLE are pLayer [31] and Flowstream [14]. pLayer provides
a Layer-2 solution to route traffic through middleboxes. Flow-
stream envisions “virtual middleboxes” with an OpenFlow
frontend for routing. As such they do not provide the re-
source management capabilities of NIMBLE. In some sense,
pLayer and Flowstream preceded the adoption of SDN/OpenFlow
and do not consider the constraints or capabilities of Open-
Flow. Other work considers the problem of routing traffic
to specific monitoring nodes [43] and considers middlebox
placement in conjunction with cloud applications [17, 23].
These do not consider middlebox composition, switch con-
straints, or dynamic packet transformations.

Policy management in SDN: SDN has traditionally fo-
cused on L2/L3 policies such as access control, rate limit-
ing, and routing [21, 33]. Recent work provides abstractions
to compose different policy modules [20]. Complementary
to these works, NIMBLE supports middlebox policies that
defines the traversal of middlebox chains. In the data plane,
prior work suggests methods to reduce the switch memory
usage for flow-based rules [36, 49]. While NIMBLE uses
some of these ideas, it takes a unified view of both switch
resource and middlebox constraints.

Middlebox design: Middleboxes increase the “device clut-
ter”, raise the capital expenditures, and have long develop-
ment cycles. CoMb [47] and xOMB [16] argue for exten-
sible software-based middleboxes that use commodity hard-
ware and a address key performance challenges similar to
prior work in the software router literature [2, 35]. NIMBLE
does not attempt to provide these benefits. Because NIM-
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BLE is agnostic to how middleboxes are implemented, we
can integrate such middleboxes as well and these may offer
new dimensions of flexibility to allow NIMBLE to dynami-
cally initiate new middlebox capabilities at desired locations.

Eliminating middleboxes: Other work tackles middle-
box management complexity by taking an extreme design of
eliminating altogether: outsourcing to cloud providers [29,
25] or placing middlebox functions in trusted VMs on end
hosts [19]. NIMBLE takes a more pragmatic approach to
help simplify existing middlebox deployments. The ideas in
NIMBLE will apply equally to cloud service providers who
provide the outsourced middlebox services.

Middlebox management interfaces: There are some ef-
forts to standardize middlebox control interfaces such as the
MIDCOM working group [45] and SIMCO [5]. Recent work
proposes API extensions to expose middlebox internal state
to a SDN controller [24]. NIMBLE can benefit from these,
especially in the context of dynamic transformations. Given
the nature of the middlebox market, however, it is less likely
that these efforts will be adopted in the near term and NIM-
BLE offers a practical alternative in the interim.

Middlebox load balancing: Prior work describes LP opti-
mization formulations in load balancing for specific passive
(e.g., IDS, flowmon) middlebox processing [27]. These do
not capture the composition requirements and switch con-
straints that NIMBLE tackles.

11. CONCLUSIONS
Middleboxes represent, at the same time, an opportunity,

a necessity, and a challenge for SDN. They are an opportu-
nity for SDN to demonstrate a practical use-case for func-
tions that the market views as important; they are a necessity
given the industry concerns surrounding the ability of SDN
to integrate with existing network infrastructure; and they
are a challenge as they introduce aspects that fall outside the
scope of traditional L2/L3 functions that motivated SDN.

This paper was driven by the goal of realizing the benefits
of SDN-style control for middlebox management without
mandating any placement or implementation constraints on
middleboxes and without changing current SDN standards.
To this end, we address key system design and algorithmic
challenges that stem from the new requirements that mid-
dleboxes imposed—efficient data plane support for compo-
sition, unified switch and middlebox resource management,
and automatically dealing with dynamic packet modifica-
tions. While our goal is admittedly modest compared to de-
veloping new visions for SDN or middleboxes, our work is
also arguably more timely and more practical.
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