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ABSTRACT

This paper presents the two generations of storage network stacks
that reduced the average 1/0 latency of Alibaba Cloud’s EBS service
by 72% in the last five years: LUNA, a user-space TCP stack that
corresponds the latency of network to the speed of SSD; and SOLAR,
a storage-oriented UDP stack that enables both storage and network
hardware accelerations.

LUNA is our first step towards a high-speed compute-to-storage
network in the “storage disaggregation” architecture. Besides the
tremendous performance gains and CPU savings compared with
the legacy kernel TCP stack, more importantly, it teaches us the
necessity of offloading both network and storage into hardware and
the importance of recovering instantaneously from network failures.

SOLAR provides a highly reliable and performant storage network
running on hardware. For avoiding hardware’s resource limitations
and offloading storage’s entire data path, SOLAR eliminates the su-
perfluous complexity and the overfull states from the traditional
architecture of the storage network. The core design of SOLAR is
unifying the concepts of network packet and storage data block —
each network packet is a self-contained storage data block. There are
three remarkable advantages to doing so. First, it merges the packet
processing and storage virtualization pipelines to bypass the CPU
and PCle; Second, since the storage processes data blocks indepen-
dently, the packets in SOLAR become independent. Therefore, the
storage (in hardware) does not need to maintain receiving buffers
for assembling packets into blocks or handling packet reordering.
Finally, due to the low resource requirement and the resilience to
packet reordering, SOLAR inherently supports large-scale multi-path
transport for fast failure recovery. Facing the future, SOLAR demon-
strates that we can formalize the storage virtualization procedure into
a P4-compatible packet processing pipeline. Hence, SOLAR’s design
perfectly applies to commodity DPUs (data processing units).
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1 INTRODUCTION

Elastic Block Storage (EBS) is a fundamental service that pro-
vides persistent data hosting in virtualized disks (VDs) to cloud
users [4, 5, 7, 8]. It has to be highly reliable (e.g., “nine 9s” for
data integrity [4]) and fast (e.g., sub-millisecond for I/O latency),
given that the VDs directly interact with the cloud users’ operating
systems in real-time. As the “compute-storage separation” or “‘stor-
age disaggregation” architecture of EBS has been widely adopted
by mainstream cloud providers, the network that interconnects the
compute and storage clusters turns into an essential bottleneck of
EBS’ overall performance.

Nonetheless, it does not mean that the network solution with
the best performance is always suitable to EBS because there are
multiple dimensions of requirements on a storage network. For
example, storage networks should also support a massive number
of connections, long network distances, various types of hardware
configurations, be compatible with the computation architecture, and
limit the cost for cloud providers. Therefore, designing a storage
network is highly challenging.

This paper presents the motivations, challenges, design choices,
deployment experiences, and lessons of two significant upgrades on
the EBS network of Alibaba Cloud (“AliCloud” for short) in recent
five years: LUNA and SOLAR.

LUNA was designed to replace the kernel TCP stack for coor-
dinating the speed shift of the storage medium from HDD (hard
disk drive) to SSD (solid-state disk). Although we were deploying
RDMA in the storage clusters’ backend network, LUNA adopted a
user-space TCP software stack instead of hardware for the network
between compute and storage clusters due to the concerns on scala-
bility and interoperability. With data from a large-scale deployment
in production, we demonstrate that a software stack like LUNA can
indeed achieve a significant improvement in end-to-end I/O latency



SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

and CPU overhead reduction. Meanwhile, LUNA also gives us two
essential directions to develop the next generation of the compute-
to-storage network. First, after the network stack is improved, the
storage virtualization of EBS becomes a significant performance
bottleneck, as it is on EBS’ data path and runs on CPU. Second, the
network stack must recover from failures in milliseconds to avoid
noticeable user impacts.

Based on the lessons LUNA taught us, SOLAR is a novel storage-
oriented and reliable UDP stack to achieve the network-storage joint
hardware accelerations and fast failure recovery simultaneously.
There are three main challenges to achieve SOLAR’s goals. First,
the resource is scarce in hardware and implementing complex and
stateful logic in hardware is also arduous; Second, the requirements
of fast failure recovery will further damage the scalability of SOLAR;
Third, pragmatically, FPGA hardware is more error-prone (e.g., bit
flipping) than software, which could significantly undermine the
data integrity after offloading the storage.

The fundamental source of the preceding challenges is the com-
plexity paid for the layered system architecture of the state-of-the-art
storage network and the generality that the existing network stacks
try to provide. Therefore, the core design of SOLAR lies in the re-
structures of the network stack to serve storage dedicatedly. SOLAR
breaks the boundary of the network and storage layers by putting
the storage processing into the packet processing pipelines. For real-
izing this, it makes a packet in the network represent a single data
block in storage. With such a network-storage fusion, SOLAR has
the following features:

Offloading the entire EBS data path: The packet processing pipeline
can also parse and process the storage semantics embedded in the
packet without involving CPU and memory to convert packets into
data blocks or process the blocks.

Simplified and lightweight hardware implementation: The “one-
block-one-packet” design can also significantly simplify the network
and storage pipeline. Because the storage has no requirements on the
order of block arrivals, SOLAR does not need to maintain receiving
buffers, connection state machines, or handle packet reordering in
the hardware.

High confidence on data integrity: For handling FPGA hardware
errors during storage-level CRC computations, SOLAR performs a
lightweight check on an aggregation of multiple blocks’ CRC values
in software. This design protects the high data integrity and the low
CPU overhead simultaneously.

Multi-path transport for fast failure recovery: SOLAR is friendly
to multi-path transport. First, since SOLAR does not maintain any
connection related states in hardware, multi-path does not degrade
its scalability; Second, SOLAR is inherently resilient to the packet
reordering caused by multi-path.

We have deployed SOLAR to approximately 100K servers. For
reliability, production data shows that SOLAR eliminated the I/O
hangs caused by network failures. For performance, compared with
LUNA, SOLAR reduces the I/0 latency by 20%-69% and increases
the throughput with a single CPU core by up to 78%. Overall, com-
bining LUNA and SOLAR, we reduced the average I/O latency of
AliCloud’s EBS service by 72% and enabled the scale up of IOPS
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Figure 1: The overall architecture of EBS.

(I/0 per second) on a single compute server by 220% in the past five
years.
In summary, this paper has four major contributions:

e We introduce the state-of-the-art architecture and working
traffic patterns of EBS networks with production experiences
and data;

e We present LUNA, a user-space TCP stack deployed on a
large scale for EBS. We explain the insights on the design
choices in practice and also share the performance gains and
lessons in production; We point out that the storage virtual-
ization is a new performance bottleneck in EBS’s end-to-end
performance;

e We present SOLAR, a novel fusion design of network stack
and storage processing that has been deployed in large scales.
SOLAR enables the entire data path of EBS to be offloaded to
hardware and the fast failure recovery with a highly efficient
multi-path transport;

e We show that SOLAR provides a general storage offloading so-
lution for hardware hypervisors on the emerging commodity
DPUs (data processing units).

This work does not raise any ethical issues.

2 BACKGROUND

This section provides the background of elastic block storage (EBS)
networks. We also show the data from large-scale production net-
works to offer a deeper understanding of the traffic patterns of EBS
networks in the wild.

2.1 Overview of EBS Networks

EBS provides an essential virtual disk (VD) service to cloud guests.
Figure 1 illustrates a typical “compute-storage separation” or “stor-
age disaggregation” architecture of EBS. This architecture places
compute servers (that host VMs) and storage servers (that host VDs)
in separated clusters. There are two main advantages of this design.
First, compute and storage servers can be designed independently
such that either type of server is optimized for its target workloads,
which is more cost-efficient than general-purpose servers; Second,
the storage cluster is dedicated to ensuring the safety of data and
manages the massive storage media with high utilization to lower
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Figure 2: The internal structure and workflow of storage agent (SA).

the cost. Third, with persistent states stored in storage servers, it
is easier and faster to migrate application services across compute
servers. It becomes a standalone and common component in the
cloud infrastructure that is easy to be integrated by different com-
pute applications.

The compute-storage separation design of EBS augments the
importance of the network since all I/O operations on the VDs
will go through the network between compute and storage clusters.
There are two types of networks in EBS: the frontend network (FN)
that connects compute and storage servers; the backend network
(BN) provides a fabric among storage servers (e.g., block and chunk
servers) in each storage cluster. FN and BN have distinctive proper-
ties. For instance, a FN usually expands across multiple clusters and
data centers in the same region, while one BN is typically the fabric
(e.g., a two-layer Clos topology) of a PoD (point of delivery). In this
paper, we mainly focus on FN.

2.2 Storage agent (SA)

As a hypervisor function, SA converts storage operations into net-
work transitions, which defines the traffic inputs of FN. Figure 2
illustrates the workflow of the storage agent (SA) with two examples
of WRITE/READ I/O operations to/from a VD. SA maintains two
tables: (i) Segment Table, which traces the mapping between the
data block address on a VD and the corresponding data segment(s)
on the physical disk(s) and the block servers in storage clusters.
Segment Table is a core data structure that realizes the virtualization
of storage; (ii) QoS (quality of service) Table maintains each virtual
disk’s service level and current usage, measured by both bandwidth

and IOPS. Each I/O request will traverse the QoS and Segment ta-
bles on the data plane, whose entries are populated through storage
management plane.

After receiving a WRITE request from the guest OS (operating
system) (in the upper half of Figure 2), SA checks the Segment Table
(Step @) to find the segments and hosting block servers of the data
piece to be written, and then it will call RPC one or multiple times
(Step (D) to transfer the optionally encrypted data and the meta-data
to the block servers in the storage cluster. After the block servers
write the data into chunk servers with multiple (e.g., 3) copies (Step
®), they will confirm the WRITE success to the SA (Step 9)).

A READ operation (in the lower half of Figure 2) follows a
similar process though it has more steps than WRITE. Note that all
data is split into atomic units — data blocks whose size is 4K bytes to
be consistent with SSD’s sector size — and all operations in SA are
in a per-block manner, though RPC may combine multiple blocks in
a transition. Thus, the latency is critical in block transition because
any straggler would postpone the completion of the entire I/O.

Alternatively, SA could potentially use remote storage protocols
(e.g., iISCSI, NVMe-oF) for the network transition and remote disk
access [27, 33, 44]. However, this design choice requires the migra-
tion of storage operations from the storage server to the compute
server, which challenges our environment for three reasons. First, it
requires extra processing and states to run storage operations (e.g.,
LSM-Tree compaction, periodical data scrubbing) and services (e.g.,
snapshot, fast failover), which incurs significant and often imbal-
anced overhead to precious CPU in compute servers. Second, to
preserve consistency while sharing a VD among multiple VMs, it
is more challenging to distribute the shared states across compute
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Figure 3: Hourly-averaged throughput and 1I/O request rate per
server over approximately 100K compute servers in a week.

servers with a strong consistency than today’s approach to aggregate
and sequentialize operations in a block server. Third, it hinders our
flexibility and granularity for allocating elastic disk resources on
demand.

2.3 Traffic patterns of FN

Traffic volume: Generally, there are two types of traffic in data
centers: VPC (virtual private cloud) traffic and EBS traffic. Figure 3a
shows that EBS traffic has become the majority traffic volume. EBS
traffic accounts for 63% of the server’s TX traffic or 51% of overall
traffic. Figure 3a and 3b show that WRITE I/O requests are 3-4x
as many as READ in both volume and I/O rate. Also, as shown in
Figure 4, on average, a single compute server can have up to 200K
IOPS (or the number of network flows per second) in production.

I/O and flow sizes: Figure 5 shows the distributions of the sizes
of I/0 operations and RPC data transfers. We can see that in FN,
the RPC size (or flow size) is under 128K bytes, and about 40%
RPCs are up to 4K bytes. Figure 5 also illustrates the reasons for
the small flow size: the I/O size follows almost the same distribution
because the guest applications (e.g., databases) intentionally invoke
small I/O requests to ensure their data integrity. Therefore, most I/O
operations can finish with a single RPC in practice. Since small I/O
operations are typically sensitive to latency, the flows in EBS are
mostly latency-sensitive.

I/O latency: Figure 1 shows the four portions in the end-to-end
1/0 latency in EBS: SA, RPC over FN, RPC over BN, and chunk
server with SSD. Each of the portions can be a bottleneck depending
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on the specific environments. For instance, as shown in Figure 6,
kernel TCP has a long latency, and it becomes the performance
bottleneck when the storage medium starts to shift from HDD to
SSD. Especially, Figure 6 shows that write I/O has only tens of us
latency (one to two orders of magnitude faster than kernel TCP) in
chunk server due to the use of SSD’s write cache without touching
its NAND medium'. With LUNA and RDMA deployed in FN and
BN, respectively, the end-to-end I/O latency is primarily reduced to
match the speed of the storage medium. As a result, SA becomes the
bottleneck at the tail.
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3 LUNA: MATCH SSD’S HIGH-SPEED

The emergence of SSD has profoundly impacted the expectations of
EBS. Since SSD significantly reduces the I/O latency from HDD’s
tens of milliseconds to tens of microseconds, applications are de-
signed with fewer concerns on the slowness of I/O operations. More-
over, applications tend to write data to SSD instead of memory for
better data durability. Taking the typical database application as an
example, it uses LRU (least-recently-used) queues to replace the
cached data in memory. Each replacement leads to storage access at
the granularity of pages (e.g., 8 KB and 16 KB in size with Oracle
SQL and MySQL, respectively). Therefore, it causes more strict
SLAs (service level agreements) for EBS backed on SSD. For in-
stance, AliCloud EBS released ESSD (Enhanced SSD) in 2018,

!The fragmentation is carefully trimmed by turning random writes into sequential writes
with log-structured merged-tree (LSM tree) and commit aggregation [56].
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actual system performance. “Kernel” denotes that both FN and BN are kernel TCP. The BN of LUNA and SOLAR is RDMA. “SSD”
includes the processing time in chunk servers and I/O in physical SSDs.

providing 1,000,000 IOPS and 100us average latency of a single
request [4, 56].

3.1 The choice of software

The traditional kernel TCP cannot satisfy ESSD’s requirements on
the end-to-end I/O latency because the kernel stack latency can be
hundreds of microseconds or even milliseconds. For low latency,
there were two mainstream solutions from which to choose: software
solutions with kernel bypassing technologies (e.g., Intel’s DPDK)
or hardware-based solutions (e.g., RDMA). While we had already
been deploying RDMA in our BN, our choice for FN is software.
Compared with BN, FN puts scalability and interoperability in a
much higher priority:
Scalability: Due to the massive number of compute nodes, a storage
node often has tens of thousands of concurrent connections with
the compute. Therefore the network stack of FN should keep high
performance and high reliability even facing numerous connections;
Moreover, FN should support inter-data center traffic to allow exten-
sive access to storage data from compute clusters in different data
centers. Conversely, BN has much less requirement on scalability
because storage clusters are typically small (tens of servers). It is
because (i) the disk density of a single chunk server can be high, so
there is no need to scale out, and (ii) the scale of the storage clusters
is controlled to limit the impact domain of failures.

Interoperability: Since different compute and storage clusters are
built at different times, they usually have different hardware config-
urations (e.g., the brands and models of a network interface card)
in their nodes. Therefore, FN must provide strong compatibility to

connect servers with different configurations. This property also en-
sures that compute and storage nodes can exchange data universally.
However, BN’s interoperability is almost always guaranteed because
the hardware configuration in an individual storage cluster is often
consistent.

In 2017, RoCEv2 (RDMA over Converted Ethernet Version 2) is
still in an early stage. Due to the limited resources in hardware, the
overall throughput of the RNIC (RDMA capable network interface
card) we use went down quickly after the number of connections
was beyond 5,000, which is too low for our scale (similar observa-
tion from [31]); Also, RoCE had severe compatibility issues among
different vendors and even different models from the same vendors
because different types RNICs speaks slightly different protocol se-
mantics, which is opaque to cloud providers; For instance, Mellanox
keeps adding new features to its newly released RNICs, which are
either not backward compatible (e.g., Selective Repeat v.s. Go-Back-
N) or require completely different network setups (e.g., lossless v.s.
lossy and Zero-touch v.s. ECN/PFC) [10]. Thus, different models of
Mellanox RNICs cannot easily communicate directly, not to mention
talking to other vendors. Finally, RoCE uses PFC for flow control,
which is a reachability risk because PFC storms or deadlocks in
large-scale networks like FN can be disasters [26]. Even though
other cloud providers like Microsoft have made region-level RDMA
deployment [41], they typically use deep buffer switches in both
DC core and regional switches, with constant buffer tuning in each
tier of network switches and close collaboration with vendors to
enable PFC in FN. Instead, our design choice is that FN should be
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Avg. RPC Latency (us) Consumed cores

Kernel Luna Kernel Luna
Single 4KB RPC 70.1 13.1% 1 1
50 Gbps stress test 1782 900 4 1

(a) Tested using 2x25GE.

Avg. RPC Latency (ps) Consumed cores

Kernel Luna Kernel Luna
Single 4KB RPC 43.4 12.4* 1 1
200 Gbps stress test 2923 465 12 4

(b) Tested using 2x100GE.

Table 1: FN RPC latency and CPU used under different load.
Stress test uses concurrent RPCs. (*including the base RTT of
8.3 us)
loss-tolerant, and shallow buffer switches are used within the region
to save cost.

On the contrary, software-based solutions do not have the preced-
ing issues in the context of FN, and its sub-optimal performance and
relatively high CPU overhead is the price we have to pay at the time.

3.2 The deployment of LUNA

LUNA has a similar architecture as mTCP [28] which provides
the Run-to-Complete (RTC) with zero-copy for network transport.
LUNA extends the RTC model into storage processing with two
significant improvements besides many small ones. The first is that
LUNA achieves a zero-copy design across SA and RPC for saving
CPU, by recyclying and sharing buffers across layers. The second is
that LUNA achieves “lock-free and share-nothing” thread arrange-
ments across network and storage processing, which removes locks
and buffer sharing across CPU cores for high parallelism. In addi-
tion, LUNA also uses features provided by NICs (e.g., TCP/generic
segmentation offload, or TSO/GSO) for partial hardware offloading
to improve performance and reduce CPU overhead.

LUNA has been deployed to almost all EBS clusters of AliCloud
since released in 2019. Figure 7 shows that storage network stacks
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reduced the average 1/O latency of AliCloud’s EBS service by 72%
in the last five years. We can see that the average latency and IOPS
were continuously improved as LUNA was gradually deployed. By
the time it was fully deployed (2021 Q1), LUNA had cut the average
I/0 latency by more than 64% and helped to increase the average
IOPS by 180%. Figure 6 shows that LUNA reduces FN latency of
kernel TCP by about 80% overall in production to match the speed
of SSDs.

LUNA must sature the line-rate to fulfill the service-level agree-
ment (SLA) for the peak capacity the user has purchased. Table 1a
and 1b present the performance and CPU overhead comparisons be-
tween LUNA and kernel TCP stack for running RPCs. For 2 x 25GE,
LUNA only needs one CPU core while the kernel TCP needs four;
LUNA cuts the latency by more than 80% without background traffic
and by about a half when the throughput is approaching the capacity.
The gaps of CPU overhead and latency under full throughput are
even larger for 2 x 100GE.

3.3 The lessons from LUNA

LUNA is our first move towards high-speed network stacks for sup-
porting storage. As well as the performance gains, we also learn
critical lessons that can guide the next generation of storage network
stack design.

SA is becoming the bottleneck. With LUNA, the bottleneck of the
end-to-end I/O latency has become SA as shown in Figure 6. It is
because SA is on the data path of the EBS; it has to perform heavy
computations (e.g., CRC, Crypto) and per-1/O table lookups in CPU.
Therefore, in the next step, the key to improving EBS’ performance
is mainly on SA and thus, offloading SA to hardware for saving CPU
overhead is an option.

Software is unsustainable with the increasing speed. Even if
LUNA is not a latency bottleneck now, that does not mean it can
sustain production for a long time. The main reason is its high
CPU overhead. In Table 1a and 1b we see that LUNA needs 4 CPU
cores for 2x100Gbps network speed running RPC transfers (the I/O
throughput is even lower). As the network bandwidth quickly ramps
up to 2x200Gbps and 2x400Gbps, offloading the network stack into
the hardware is indispensable.
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Common network failures can be disasters to storage. In produc-
tion, network failures easily create traffic blackholes that impact the
storage’s performance [16, 58]. Figure 8 shows a large number of
VMs experienced 1/O hangs (defined as /O gets no response for
one minute or longer) due to failure incidents. Unexpected long I/O
wait time during I/O hang may lead to VM crashes [58] since VM
views EBS as a PCle device. The key lesson is that even though
storage offers high availability and durability using replication or
erasure coding (EC), performing data recovery in the storage incurs
a relateively high overhead, such as backup read in EC, fencing
for data consistency, etc. Those reactions typically require multiple
seconds to minutes to converge. In addition, despite the network
fabric having enough redundancy (even with the ToR switch, we
connect each server to a pair of it), LUNA has no option but to wait
for the long recovery time (e.g., minutes) via network operations.

Take an actual incident as an example. In one storage of LUNA’s
deployment, one line card of a Core switch failed, leading to 4%
packet loss across the cluster, and more than one thousand VMs were
affected. It takes 12 minutes for the network operation to locate and
isolate the failing card, and the storage recovered after additional 30
minutes. Specifically, such a long connectivity loss can easily trigger
failure reactions in the storage, and the whole system will experience
an even longer convergence time. In our later study, which replayed
the incident, we found the storage would have no visibility to the
failure if LUNA could have found a good network path and avoided
the failing core switch within one second.

4 SOLAR: OFFLOAD EBS’ DATA PATH

Starting from 2018, we develop our new generation of EBS net-
work “SOLAR” after LUNA. Compared with LUNA, SOLAR is a
fundamental redesign of the FN stack not only to solve the issues
left in LUNA but also to embrace a profound transform in the com-
pute architecture: virtual machine (VM) based hosting to bare-metal
hosting.

4.1 Background: the rise of bare-metal cloud

Offloading cloud infrastructure to hardware is a long-term endeavour
led by top cloud providers [2, 3] and hardware vendors [6, 9, 11, 12].
Generally, the cloud infrastructure includes virtualizations of com-
pute (e.g., VM), network (e.g., virtual private cloud (VPC)), and
storage (e.g., EBS). The first component that was offloaded to hard-
ware was VPC, which promoted the development of SmartNICs [22].
The success of network offloading stimulated the idea of offloading
the compute and the storage, which finally forms the concept of
bare-metal clouds.

The core idea of bare-metal cloud is putting the cloud infrastruc-
ture into dedicated hardware (as shown in Figure 9)(a), such that the
cloud user can occupy the entire physical machine without sharing
resources (e.g., CPU and memory) as the cloud provider or other
guests. Bare-metal cloud has remarkable advantages:

Flexibility: Cloud tenants require the option of bare-metal servers
to run either their virtualization (e.g., VMware Cloud [14]) directly
on the hardware without the performance hit of nested virtualization
or applications intended to access the low-level hardware features
(e.g., Intel RDT [13]) or require licensed supports in non-virtualized
environments. Meanwhile, they still want to access the elastic, re-
liable, and highly efficient infrastructure services (e.g., EBS). On
the other hand, the type of resources (e.g., CPU) a guest can get is
defined by the cloud providers because the guest’s programs have
to run on the same hardware platform with the cloud infrastructure.
Though such bounding seems to be working relatively well in the
traditional public cloud, it is more troublesome to have such a con-
straint in private/hybrid clouds where customers desire to move their
off-cloud environments to clouds without significant changes.

Agility: Bare-metal cloud is favorable in the edge scenarios. This is
because the infrastructure overhead becomes significant when the
cloud size is small [54], and the overhead will be well limited if
the entire cloud infrastructure is in dedicated hardware. Moreover,
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Figure 10: High CPU overhead and PCle bottleneck for either LUNA or RDMA; SOLAR achieves data path offloading.

the deployment of bare-metal clouds becomes lightweight and fast
(ideally insert a PCle card), which is critical for edge clouds.

Isolation and security: Since the guests’ hardware is isolated from
the cloud infrastructure, it is easier to guarantee performance iso-
lation. Also, attacks based on resource sharing (e.g., side-channel
attacks) will be challenging to realize.

4.2 Data processing unit (DPU)

Traditional cloud servers offer guest VM hosting and run cloud
hypervisor in host CPUs (Figure 9(a)). DPU is the foundation of
bare-metal clouds. As shown in Figure 9(b), a DPU provides CPU,
memory, programmable hardware (e.g., FPGA or ASIC), traffic
shaper, and fixed-function accelerators for offloading the hypervi-
sor. It also provides a DMA engine that can read/write data directly
from/to the guest memory via PCle. There is also an internal inter-
connect channel among the CPU, memory, and accelerators.

Alibaba is one of the pioneers of bare-metal clouds. As our
early version of DPU, ALI-DPU, which integrates FPGA for the
progammable data plane with interconnection options, has some crit-
ical resource limitations by that time. First, the FPGA’s resource is
minimal due to the hardware cost and power consumption concerns
(e.g., DPU is typically limited to 100~300 Watt), and the infrastruc-
ture CPU on ALI-DPU only has six cores. In addition, due to the
delay of PCle 4.0, the internal interconnect of ALI-DPU has not
enough bandwdith capacity. While the Ethernet can be 2 x 25Gbps,
the internal PCle channel is far less than 100Gbps. Hence, the in-
ternal PCle channel could be a throughput and latency bottleneck if
traffic passes through it back and forth.

As the service model extends from a public cloud host to private
and edge clouds, the evolution of the bare-metal cloud is accelerating,
backed up by the whole cloud and hardware industry. Nowadays,
multiple major hardware vendors have released the designs and road
maps of their commodity DPU chips (e.g., Intel’s Mount Evans [9],
Nvidia’s BlueField [11], Fungible’s F1 [6], Pensando’s DSC [12],
etc.). In these chips, the internal interconnect channel may not the
bottleneck anymore; the programmable data path is ASIC (instead
of FPGA) that supports P4 languages, but the CPU resource is still
limited to control the cost and power consumption.

In this section, we focus on the design of SOLAR on top of ALI-
DPU and we will discuss how to run SOLAR in commodity DPUs
after they are finally released shortly.

4.3 EBS networks in bare-metal clouds

As shown in Figure 2, SA realizes the storage virtualization in the
host CPU. Hence, in the bare-metal cloud, SA has to run inside
the infrastructure CPU of ALI-DPU. This structure results in two
significant challenges to EBS in the bare-metal clouds.

CPU overhead: As shown in Figure 10(a), EBS’ entire data path,
including both LUNA’s network stack and the SA, have to go through
ALI-DPU’s CPU, resulting in a heavy CPU load that increases
with the network throughput. Furthermore, unfortunately, RDMA’s
improvement is limited (Figure 10(b)) because it merely offloads
the network stack, but not SA. Thus, the data path still goes through
ALI-DPU’s CPU.

Limited throughput: Figure 10 also illustrates that either LUNA or
RDMA will suffer from the bottleneck in ALI-DPU’s integrated
PCle because they require the traffic to transverse PCle twice.

Therefore, limited by the new compute architecture and the hard-
ware capabilities by the time, we have to design a new FN stack for
EBS to embrace the era of bare-metal cloud.

4.4 The system design of SOLAR

The design goal of SOLAR has two folds. On the one hand, for
adapting to the new compute architecture, it should remarkably
reduce the CPU overhead on ALI-DPU and avoid the internal PCle
channel by allowing both the network stack and the SA offloaded to
hardware (as shown in Figure 10(c)); On the other hand, for solving
the reliability problems we observed in LUNA, it should be able to
detect and avoid in-network failures with path changing actively.
Our design should accommodate the two independent requirements
harmoniously.

Challenges: There are three main challenges to achieving the goals
of SOLAR. First of all, both the network stack and the SA are com-
plex and stateful software systems, such that it costs tremendous
development efforts and hardware resources to implement the cur-
rent system architectures of them into the FPGA. Especially because
the FPGA on ALI-DPU is also used for other hypervisor functions
(e.g., virtual switch), the resources left for EBS are very limited.
Next, even if we can re-implement the current LUNA and SA
with FPGA, its scalability will become a new concern. Furthermore,
our design choice is a simple and highly efficient multi-path trans-
port [48] for fast failure recovery. However, it requires states on each
traversing path, which will make the scalability issue even worse.
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Finally, according to our practical experiences, FPGA is error-
prone due to random hardware failures (e.g., bit flipping). Among
the data corruption incidents detected by CRC mismatches in pro-
duction, FPGA error is the major contributor by 37% as shown in
Figure 11. Our experience reveals that bit flipping in FPGA can
corrupt data and table entries in memory and distort the execution
logic towards an unexpected outcome. Therefore, a concern to of-
fload SA’s CRC into the FPGA is that it could potentially undermine
the data integrity because of errors in the CRC computation on the
FPGA itself. Furthermore, since EBS has an extremely high SLA
for data integrity (e.g., 99.9999999% [4]), SOLAR must provide at
least the same confidence as software.

Observations: SOLAR has to eliminate unnecessary complexity in
both network stack and SA to fit the ALI-DPU hardware accelerator.
We observe that most of the complexity comes from the overgen-
eralization and layered system structure. Specifically, for instance,
according to the byte-stream abstraction, either TCP or RDMA in
RC (reliable connection) maintains complex state machines for con-
nections and packet buffers for handling packet loss or reordering,
but it is unnecessary to EBS. In an I/O READ as shown in Figure 10,
EBS accepts any arriving orders of the blocks if only all of them
arrive on time while in-order buffering creates unnecessary head-of-
line blocking; For another example, to map packets on the network
layer to the data blocks on the storage layer, SA has to maintain
data structures to remember and update the mapping records in real-
time. As the system scale and the exceptions go up, maintaining the
preceding states is a huge burden that prevents hardware offloading.

Idea - the fusion of storage and network: The key to reducing the
complexity and the number of states maintained in FN is eliminating
the packet buffering and packet-to-block converting. Therefore, SO-
LAR makes a one-to-one mapping between a packet and a data block,
which essentially breaks the boundary between network and storage.
Specifically, while the network is a packet processing pipeline, SA
is essentially a pipeline of data chunk processing (Figure 2). Hence,
we can merge the pipelines of the network and the storage if we
make a single packet represent a single data block.

In summary, the “one-block-one-packet” strategy also has the
following excellent properties:

Low packet buffer . Since the storage pipeline can directly process a
packet in the hardware, packet buffering for assembling packets into
data blocks is not needed anymore.
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Zero-touch to CPU or memory . The handover between the network
and storage pipelines can be done within the hardware accelerator
without using the memory as a hub.

Few maintained states . There is no need to maintain mappings
between packets and data blocks anymore.

Compatibility with multi-path . As all packets become independent,
the whole transport is insensitive to packet reordering, which signifi-
cantly simplifies the multi-path transport.

tH)

Easy to realize in practice . Fortunately, the “one-block-one-packet
also does not require significant storage or network changes. It is
because currently, a data block is typically 4K bytes in size, and a
packet can be up to 9K bytes in a jumbo frame. Therefore, the design
is pragmatic if only the network supports the jumbo frame, which is
prevalent in state-of-the-art data centers.

4.5 The workflow of SOLAR

SOLAR achieves 1/O operations using “one-block-one-packet” net-
work transitions. First, The storage 1/O is split into one or multiple
outgoing RPCs towards different storage servers. Then, each RPC
packet delivers and retrieve one data block for WRITE I/O and
READ I/O, respectively. Figure 12 and 13 demonstrate the system
architecture of SOLAR and the workflow of an I/O WRITE and
READ operation, respectively. Compared with Figure 2, we can see
that SOLAR put the data path of SA into the FPGA.

WRITE: When the guest issues a WRITE to a VD, the I/O operation
is directly forwarded to the FPGA on ALI-DPU via an NVMe
command. QoS and Block are two typical “match-action” table
checking steps: QoS performs admission control of I/O operations
to enforce bandwidth constraints for maintaining the service-level
agreement (SLA) of each VD; Block translates the VD’s block
address (i.e., Logical Block Addressing or LBA) to its corresponding
segment address of the physical disk in the remote block server. A
large I/O (e.g., a 256KB write I/0) may consist of LBA addresses
located in multiple block servers, and therefore Block splits the I/O
into smaller I/Os, one for each block server, by adjusting the LBA
address. Note that the chance of I/O splitting is typically low since
the I/O size is generally small (Figure 5), and each segment hosted in
a block server contains relatively large (e.g., 2MB) and continuous
LBA addresses to avoid such fragmentation.

After the block table lookup, ALI-DPU’s CPU polls the 1/O oper-
ation to issue an RPC for data delivery of each (possibly split) I/O.
The final metadata obtained from the block table will be inserted
into the packet generator (PktGen) as the EBS header in the packet.
In addition, the RPC and Path&CC modules in the CPU will insert
the RPC header and the UDP header (using the source UDP port as
the path identifier) into the packet, respectively. Meanwhile, FPGA
fetches the block data via DMA, computes its CRC value in the CRC
module, and optionally encrypts the data in the SEC module. Finally,
the PktGen module will send out the generated packet with the send-
ing rate from the Path&CC module in the CPU of ALI-DPU. After
the RPC generated, the CPU will get the acknowledgments with the
path condition(i.e., timeout, RTT) and congestion feedbacks (i.e.,
INT (in-band network telemetry)) for path selection and congestion
control for each RPC independently.
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READ: To accommodate incoming block data, SOLAR maintains an
Addr table that records RPC and packet IDs and the corresponding
guest memory addresses. Like the WRITE I/O, the READ I/O will
traverse QoS and Block tables to perform request admission, segment
lookup, and potential I/O splitting. When sending an RPC request
for each (possibly split) I/O, the RPC populates an entry in the
Addr table for each incoming packet and removes it after the reply
arrives. Since each packet in the READ response is an independent
data block and the IO size is generally small (Figure 5), SOLAR
performs packet processing at line-rate without buffering or extra
state maintained in the Addr table.

The READ request (a UDP packet) is sent from the CPU of ALI-
DPU, and the SOLAR control plane decides the sending path and
sending rate. When the response comes in, it will directly go to
FPGA, given that it has a data block payload. Since the RPC has
already recorded the actions in the Addr table, the response packet
can be directly processed, and its entry is cleaned afterward without
interrupting the CPU.

After the last step in the hardware pipeline (CRC check), the hard-
ware will put the data into the guest memory via DMA. Meanwhile,
the hardware sends the headers and metadata of the packet to the

CPU for the final data integrity check and congestion window up-
dates. Then, the SA control plane in the CPU will ring the doorbell
to the guest OS after the data integrity check passes.

Hardware errors v.s. data integrity: EBS heavily relies on CRC
to check the errors in the hardware. However, as we mentioned
early, the CRC check performed on FPGA cannot guarantee a high
standard of data integrity. Alternatively, moving the CRC compu-
tation back to the CPU will increase the CPU overhead. SOLAR
introduces the CRC aggregation and checking in the CPU for both
data path offloading and data integrity. In this design, CRC32 is
deployed in FPGA, and the CPU merely verifies segment level CRC
with the CRC values for each data block in the segment. It essen-
tially takes advantage of CRC32’s divide-and-conquer property —
CRC(A ® B) = CRC(A) ® CRC(B) [1].

Multi-path transport: SOLAR’s control plane maintains multiple
(e.g., 4) persistent paths towards each block server. We use different
UDP ports as path IDs and leverage the randomness of ECMP’s
consistent hashing to select paths. For each path, SOLAR maintains
path conditions (e.g., congestion window, sending rate, RTT, ezc.),
which will be updated by congestion signals and acknowledgment.
SOLAR disseminates packets over multiple paths in favor of the
path with low average RTT. Packet loss is detected via out-of-order
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Figure 14: Fio Read test with 32 I/O depth under different num-
ber of 2.1 GHz cores.

arrivals or timeout happened in the same path for selective retrans-
mission. SOLAR uses consecutive timeouts to infer a path failure
and shifts traffic to other paths accordingly. This design is simple
but effective in practice. There are indeed some cases in which the
recovery is slow because multiple paths go through the same failure
points(Table 2), and we plan to make the path selection more explicit
with INT probing.

4.6 SOLAR in commodity DPUs

Despite that the first target hardware of SOLAR is ALI-DPU, we
keep its design for future commodity DPU chips. When designing
SOLAR, it was clear that ASIC will finally replace FPGA after the
solution of hypervisor offloading converges because DPU needs to
optimize the cost and the power consumption; it was also predictable
that DPU would have a programmable packet processing pipeline
(and use languages like P4) for offloading networking functions
(e.g., virtual switch, firewall, load balancer, efc.) Therefore, SOLAR
has the advantage of leveraging the programmable packet processing
pipeline to offload storage virtualization. Since in SOLAR, each data
block is a single packet, and the functions in SA are essentially block
reading, data computation, block writing, and table checking/main-
taining, the data path of SA can be expressed with the P4 language
and executed on the P4-compatible pipeline.

4.7 The deployment of SOLAR

SOLAR has been deployed in our production by over about tens of
compute clusters and approximately 100K servers since 2020. We
use monitoring data from production clusters and testbed results
to evaluate the performance and resource consumption of SOLAR.
We use SOLAR * to denote the SOLAR scheme with data plane
offloading disabled.

SOLAR improves the I/O performance. Figure 7 shows that the
overall latency in EBS production is reduced by 25% since SOLAR’s
large-scale deployment. The measurement from production clusters
shows that SOLAR reduces latency for small I/O compared with
LUNA. For instance, as shown in Figure 6, SOLAR reduces the
median latency of SA by 95% and end-to-end by 69% for 4 KB
Write. SOLAR also decreases the FN latency, especially by more
than a half in the 95th percentile of 4 KB Read. The latency reduction
comes from hardware offloading and state reduction from its “one-
block-one-packet” strategy. Note that Figure 6(d) also shows that
SOLAR still has a long tail latency in SA, though its gain on average
latency is remarkable. This is because SOLAR still relies on the
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Failure scenarios LuNA SOLAR
ToR switch port failure 0 0
ToR switch failure 216 0
Spine switch failure 0 0
Packet drop rate=75% 10 per Second 0
ToR switch reboot/isolation 123 0
Blackhole in a ToR switch 611 0
Blackhole in a Spine switch 1043 0

Table 2: Number of I/Os with no response in one second or
longer under failure scenarios in our testbed. The experiment is
performed by 90 compute servers and 82 storage servers with
generated traffic from block sizes of 4-32 KB, 1/0 depth of 4,
and read/write ratio of 1:4.

CPU to perform path selection and congestion control (especially
for WRITE), which can create high CPU loads under intensive I/Os.

Testbed results in Figurel4 show that SOLAR achieves better
resource efficiency than LUNA and RDMA, as the throughput and
IOPS of a single core increased by 78% and 46%, respectively. SO-
LAR also circumvents ALI-DPU’s onboard PCle bottleneck through
completely offloading data plane to hardware at line-rate. Figurel5
shows that SOLAR achieves a low I/O latency close to RDMA. We
also test LUNA with jumbo frame and the result is the same due to
the inevitable CPU handover and states.

SOLAR avoids 10 hangs from network failures. Guest VMs used
to suffer from tens of IO hang incidents per year due to network
failures (Figure 8). We reduced this number to zero over its two-year
deployment when SOLAR deployed. Table 2 shows more cases in
testbed results to reduce slow 10 responses time during failures.
The critical insight is that even though the “fail-stop” failures on
a device or port can be quickly converged via ECMP routing, the
traffic blackhole on a subset of traffic is hard to detect and mitigate
via network operations. Furthermore, EBS is increasingly sensitive
to latency hit and reachability loss because guest applications view
EBS as a PCle device. Hence, SOLAR fulfills the need to quickly
route around the failure point to achieve high availability.

Hardware consumption Table 3 shows SOLAR’s hardware resource
consumption. SOLAR achieves its performance and reliability goals
under ALI-DPU’s stringent resource constraints.

4.8 The lessons from SOLAR and discussions

The speeds of network and PCle: One of SOLAR’s advantages is
bypassing PCle, which is the throughput bottleneck of ALI-DPU.
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Modules LUT(%) BRAM (%)
Addr 5.1 8.1

Block 0.2 8.6

QoS 0.1 0.4

SEC 2.8 0.9

CRC 0.3 0.0

Total 8.5 18.2

Table 3: SOLAR’s hardware resource consumptions.

Thus, SOLAR manages to handle about 150K IOPS per CPU core
without incuring queueing delay. While it might seem very specific
to our hardware limitation, it essentially reflects that the network’s
speed has become comparable to PCle. It spent close to ten years
from PCle 3.0 to PCle 4.0, but at the same time, the network interface
was upgraded from 10Gbps to 100Gbps (or more). Therefore, we
believe bypassing PCle will be a long-term requirement for all high-
performance network protocols. Here, the key techniques require
to offload both network transition and application’s post-processing
before DMA.

Pros and cons of jumbo frame: Large packet sizes can increase
the chance of congestion in the switch that uses store-and-forward
pipelines, especially running with multi-path exaggerates the incast
scenario. We take two steps to reduce the risk of high latency brought
by the jumbo frame in SOLAR. First, we use a per-packet ACK to per-
form a fine-grained congestion control algorithm (e.g., HPCC [38])
with a dedicated queue in the switch for SOLAR; Second, we use
4K bytes instead of 8K bytes for the jumbo frame to balance the
congestion risk and the benefit from the end-to-end perspective.

Integrated EBS with DPU: The compute-storage separation archi-
tecture fits the large-scale storage requirements well but introduces
a high network communication overhead. In edge or private clouds
where the network scale is limited but bare-metal hosting and high-
performance are still needed, we can consider merging the SA and
the block server into DPU and implement them in the hardware
P4-capable pipeline.

5 RELATED WORKS

High-performance network stacks: The challenges to the net-
work brought by the advances of the storage medium is a common
problem in the cloud, while different cloud providers have their
strategies and solutions. As this paper focuses on FN, AliCloud also
reported its RDMA deployment experiences in BN [23]. Microsoft
is using RDMA for the latency-sensitive services (e.g., search, stor-
age) [26, 59], and Huawei also adopts RDMA for its storage [57].
Different from the preceding hardware-based solutions, Google
chooses user-space software solutions [34, 42] and demonstrates
their performance is close to the hardware with a high velocity of
update and customization. Furthermore, Google improves RDMA’s
scalability and predictability using a software-aided architecture [53].
Compared to the preceding reports from the industry, we provide
more insights on the differences of FN and BN, the considerations
and tradeoffs for FN, the lessons learned from a massive scale deploy-
ment of user-space TCP, and the changes of performance bottlenecks
from the end-to-end perspective of I/O latency.

Miao et al.

Recently, cloud providers started to build their high-speed net-
work stacks according to their experiences of operating existing solu-
tions. For instance, Amazon designs EFA (Elastic Fabric Adapter) [51]
specifically for the HPC (High-Performance Computing) scenarios
on its self-designed NIC “Nitro”. EFA has some similar proper-
ties with SOLAR, such as a reliable UDP protocol and a multi-path
transport, but it does not target on solving FN’s scalability and inter-
operability concerns or achieving hardware offloading for the entire
storage data path.

In-network accelerations: With the emergence of the programmable
network data plane, people found it might be beneficial to the ap-
plications if they could offload (partial) loads into the switches or
SmartNICs. For instance, Microsoft Azure [22] and AliCloud [46]
offload various network functions into FPGA-based SmartNIC and
P4 switches, respectively; Mellanox [25] builds an in-network ag-
gregation protocol using InfiniBand switches. SOLAR’s focus is
EBS, which is complementary to these works. There are also many
works from academia in this direction. For example, NetCache [30]
and NetChain [29] accelerate key-value stores and distributed locks
with programmable switches respectively; Gimbal [44] designs a
multi-tenancy framework for offloading NVMe storage to Smart-
NICs. Many other works use programmable switches to accelerate
caching [39], machine learning [21, 24, 35, 50], consensus proto-
cols [18, 19, 36, 37, 47], load balancing [40, 43], database [55], and
file system [32].

Joint design of network and applications: Co-designing of net-
works and applications is not a new idea. RedN [49] integrates self-
modifying RDMA chains of existing RDMA as Turing machines
for key-value stores. RMC [15] is an extension of RDMA to install
primitives in SmartNICs to optimize key-value stores. PRISM [17]
provides a library of RDMA extensions for better support appli-
cations like key-value stores, block storage, and distributed trans-
action protocols. It points out the CPU involvement problem in
post-RDMA processing, similar to the scenarios in Figure 10(b).
Works like Cliquemap [52], FaRM [20], and Pilaf [45] studies how
to make better usage of the existing RDMA interfaces to improve
specific applications’ performance.

6 CONCLUSION

This paper shows how the design of the EBS network evolves with
the developments of storage media, service scales, computation ar-
chitectures, hardware configurations, efc. in AliCloud. The evolution
will continue driven by the desire for better performance, lower cost,
and more cloud scenarios (e.g., private and edge clouds). In addi-
tion, LUNA demonstrates the tremendous gains brought by kernel
bypassing, and SOLAR further improves the performance, reliability,
and efficiency by offloading the entire EBS data path into hardware.
One promising direction of the future EBS network is hardware
offloading in newly emerging chips like DPU, and we demonstrate
that EBS’ data path can be an excellent fit to the programmable
packet processing pipeline originally designed for offloading VPC.
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