
Stateful Layer-4 Load Balancing in Switching ASICs
Jeongkeun Lee

Barefoot Networks
Rui Miao

University of Southern California
Changhoon Kim
Barefoot Networks

Minlan Yu
Yale University

Hongyi Zeng
Facebook

CCS CONCEPTS
• Networks → Programmable networks; Network manage-
ment; Data center networks;

KEYWORDS
Load balancing; Programmable switches
ACM Reference format:
Jeongkeun Lee, Rui Miao, Changhoon Kim, Minlan Yu, and Hongyi
Zeng. 2017. Stateful Layer-4 Load Balancing in Switching ASICs.
In Proceedings of SIGCOMM Posters and Demos ’17, Los Angeles,
CA, USA, August 22–24, 2017, 3 pages.

1 INTRODUCTION
In this demo, we show that a large number of software based
load balancer servers can be replaced by a single modern
switching ASIC, potentially reducing the cost of load balanc-
ing by two orders of magnitude. Today, large data centers
typically employ hundreds or thousands of servers (or around
4% of their data center compute resources [1]) to load-balance
incoming traffic over application servers. These software load
balancers (SLBs) map packets destined to a service (with a
virtual IP address, or VIP), to a pool of servers tasked with
providing the service (with multiple direct IP addresses, or
DIPs) [1, 4]. An SLB is stateful; it must always map a con-
nection to the same server, even if the pool of servers changes
and/or if the load is spread differently across the pool. This
property is called per-connection consistency or PCC. The
challenge is that the load balancer must keep track of millions
of connections simultaneously.

Until recently, it was not possible to implement a load
balancer with PCC in a commercial off-the-shelf (COTS)
switching ASIC, because high-performance switching ASICs
typically cannot maintain per-connection states with PCC
guarantee. Newer switching ASICs provide resources and
primitives to enable PCC at a large scale. We present a

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Ange-
les, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5057-0/17/08. . . $15.00

system, called SilkRoad, which is defined in a 400 line P4
program, and when compiled to a state-of-the-art switching
ASIC, it can load-balance millions of connection simulta-
neously at line rate. Our conference paper [2] details the
solution design and evaluates its scale and cost by running
trace-driven simulations on the data collected from a large
web service provider. The paper also shows the feasibility of
storing millions of connection states into a switching ASIC.
On top of that, the present two-page abstract shows the full
cycle of connection and DIP pool management, explaining
the co-design between switch data plane (ASIC) and control
plane (software) to enable PCC in switching ASICs.

2 SILKROAD DESIGN AND OPERATION
L4 load balancing is basically a mapping function from a
connection (i.e., the source and VIP IP addresses, the protocol
ID, and the port numbers) to a DIP; SilkRoad needs a
table that selects a DIP when it sees the first packet of
a new connection. A DIP pool is managed for each VIP
(each service); we maintain the VIP-to-DIPPool mappings
in VIPTable. To provide PCC, another table is needed to
remember the selected DIP for each new connection so that
the following packets of the connection will be consistently
mapped to the same DIP, even when the DIP pool changes
or the traffic load (new connections) is spread differently
across the pool. ConnTable is introduced to remember the
per-connection mapping states.

ConnTable is placed before VIPTable. The first packet of
a new connection will miss ConnTable and then it must im-
mediately get a DIP assigned by VIPTable and be forwarded
to the selected DIP by the switching ASIC. Thus, SilkRoad
runs a hash over the connection 5-tuple to choose a DIP out
of the current DIP pool, the current set of servers backing
up the service represented by the VIP.

To guarantee PCC, the connection-to-DIP mapping entry
must be quickly programmed into ConnTable so that the
subsequent packets of the connection will match the entry in
ConnTable and get forwarded to the same DIP with the first
packet. However, in high-speed switching ASICs, inserting
a new entry into an exact-match table typically requires a
complex cuckoo-hashing algorithm running on the switch
management CPU [2, 3]. A new connection arrival event
must be learned by the CPU, which then programs a new
entry into ConnTable to store the connection-to-DIP mapping
in the switching ASIC. Thus, LearnTable is introduced in
SilkRoad to trigger connection learning to the CPU when
a new connection arrives and gets a DIP from VIPTable.

133

DOI:10.1145/3123878.3132012 

DOI:10.1145/3123878.3132012 

https://doi.org/10.1145/3123878.3123926
https://doi.org/10.1145/3123878.3123926


SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA J. Lee et al.

Similar to L2 MAC learning, this L4 connection learning
through CPU can take about one millisecond.

Figure 1 shows the overall architecture of SilkRoad, depict-
ing the control flow between the various tables. The figure
shows a couple of additional indirections in the mapping from
connection to DIP and two more tables: DIPPoolTable and
TransitTable. This is to tackle two major design challenges:
1) scaling ConnTable and 2) guaranteeing PCC under DIP
pool changes.
ConnTable scaling: we observed up to ten million connections
handled by a top-of-rack (ToR) switch in the data center of
the large web service provider [2]. To fit millions of connection
states within tens of MBs of switch SRAM, we reduce the
size of a connection entry of ConnTable: match field and
action data. We propose to store a small hash of a connection
5-tuple rather than the full 5-tuple to reduce the match field
size, while our design mitigates the impact of false positives
introduced by the hash. For example, 37 bytes of a 5-tuple
of an IPv6 connection can be reduced down to a 16-bit hash
digest.

To reduce the action data bits of a connection entry, we
store a DIP pool version rather than the actual DIPs and
intelligently reuse version numbers across a series of DIP
pool updates. From the large web service provider data, we
observed that a 6-bit version number is big enough to handle
most DIP pool update scenarios [2]. We found that most
inbound connections are short-lived; each DIP pool and its
version do not need to last for long. Using a 6-bit version
field reduces the action data size to 1/24 in case the DIPs
are IPv6 (16B IP address + 2B TCP port).

Since we introduce another level of indirection (connection
to version to DIP pool), we maintain the version-to-pool map-
pings in a new table called DIPPoolTable, which maintains
the active DIP pools for each VIP.
PCC under DIP pool changes: the connection learning and
entry insertion through CPU can take around one millisecond,
which is long enough that a second packet of the connection
can hit the load-balancing switch in modern datacenters
with sub-ms RTT. If VIPTable updates its DIP pool version
in-between the first and second packet arrivals, the second
packet can be mapped to a new version, and thus a different
DIP, violating PCC. To solve this, we introduce TransitTable,
which is a simple bloom filter, to remember the set of con-
nections that should be mapped to an old DIP pool version
when VIPTable updates its DIP pool version. We minimize
the size of the bloom filter using a 3-step update process [2].

Our co-design of the switch data plane (P4 program for
the ASIC) and the control plane (software running on the
CPU) ensures that every recently started connection is either
programmed in ConnTable or remembered by TransitTable,
thus protected from a DIP pool version change in VIPTable.
Right after each version change, all the packets that miss
ConnTable retrieve both old and new versions from VIPTable
and then are checked by TransitTable to see if the packets
hit the bloom filter. If hit, they use the old version; if miss
they use the new version.

ConnTable
(Digest	à Version)

VIPTable
(VIP	à Version)

TransitTable
(Cache	pending	conn)

DIPPoolTable
(VIP,	Version	à DIP)miss

hit

Switch	APISoftware

Hardware

VIP in update

no update

LearningInsertion

LearnTable

Match action tables

Bloom filter
miss

hit (use old version)

(use new version)

Learning	
filter

Figure 1: System architecture.

Connection and version management: When a DIP pool is
updated, we create a new DIP pool by applying the change
to a copy of the original DIP pool. We then assign a new
version to the new pool and program VIPTable to map new
incoming connections to the newest DIP pool version. Once
a DIP pool is created and has active connections that still
use it, the DIP pool is never changed in order to provide
consistent hashing to the active connections. A connection
‘uses’ a DIP pool if the connection arrives when the pool was
the newest, and thus VIPTable maps the connection to the
pool.

A DIP pool is destroyed when all the connections that use
it are timed-out and deleted from ConnTable. We employ idle
timeout support in switching ASICs: each connection entry in
ConnTable is associated with a tiny aging counter, which is
reset by every incoming packet matching the entry. The ASIC
periodically increments the counters and detects counter
overflows, upon which entry timeout events are notified to
the CPU.

When the pool is destroyed, the version of the pool is also
released and returned to a ring buffer so it can be reassigned
to a newly created DIP pool. The switch software tracks
the connection-to-pool mappings and manages DIP pool
creation/deletion and as well as the ring buffer that stores
available version numbers. Our full paper [2] discusses a few
ways to reduce the number of DIP pools (hence versions)
that a switch needs to maintain at the same time.

3 EVALUATION
We built our prototype by adding about 400 lines of code
into the P4 reference switch [2]. We have also implemented a
control plane in switch software that handles new connection
arrival events and connection timeout events. The software
runs the cuckoo hash algorithm to insert or delete connection
entries in ConnTable. In addition, the control plane performs
3-step PCC update for DIP pool updates. The connection
handler and DIP pool manager are written in about 1000
lines of C code.

For the system evaluation, we create tens of thousand TCP
connections starting and ending every second and observe
them load-balanced to multiple DIP servers at line-rate. DIP
pool updates happening in parallel to the connection arrivals
do not cause connection remapping.

134



Stateful L4 Load Balancing in Switching ASICs SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA

REFERENCES
[1] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith,

Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin
Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016. Maglev:
A Fast and Reliable Software Network Load Balancer. In NSDI.

[2] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Min-
lan Yu. 2017. SilkRoad: Making Stateful Layer-4 Load Balancing
Fast and Cheap Using Switching ASICs. In ACM SIGCOMM’17.

[3] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing.
Journal of Algorithms (2004).

[4] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Al-
bert Greenberg, David A Maltz, Randy Kern, Hemant Kumar,
Marios Zikos, and Hongyu Wu. 2013. Ananta: Cloud scale load
balancing. In ACM SIGCOMM Computer Communication Re-
view.

135


	1 Introduction
	2 Design and Operation
	3 Evaluation
	References

